Пусть детский билет стоит — х (икс) рублей, а взрослый билет — у (игрек) рублей. Тогда первая семья заплатила: х · 2 + у = 440 (руб.), а вторая семья: х · 3 + у · 2 = 789 (руб.). Выразим из первого уравнения значение игрека (у = 440 – х · 2) и подставим его во второе уравнение:
х · 3 + (440 – х · 2) · 2 = 780;
х · 3 + 880 – х · 4 = 780;
- х = 780 – 880;
- х = - 100;
х = 100 (руб.) — цена детского билета.
Найдем цену взрослого билета: у = 440 – х · 2 = 440 – 100 · 2 = 240 (руб.).
ответ: один детский билет стоит 100 рублей, а взрослый — 240 рублей.
Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком. и Обратная теорема Виета если угадаем числа, такие, что их сумма опять же для приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком то эти числа - корни уравнения, при условии, что дискриминант неотрицателен.
По Виету сумма корней 13, один корень есть, тогда второй корень
13-3=10
и по тому же Виету произведение корней равно свободному члену q=3*10=30
Тогда ученик делает заказ: K = 8x
учитель:K = 6у
То есть 8х = 6у (1)
Вместе за 1 час они делают х+у=7 деталей (2)
Из (2): х = 7-у, подставим в (1):
8*(7-у) = 6у
56 - 8у = 6у
14у = 56
у = 4 детали в час делает мастер
Следовательно, заказ составляет:
Z = 6*4 = 24 детали