1.
а) (2h-3)^2=4h^2-12h+9 (квадрат разности)
б) (x+5y)^2=x^2+10xy+25y^2 (квадрат суммы)
в) (2/3 a-b)(2/3a+b)=4/9 a^2-b^2 (разность квадратов)
2.
а) (r+2)(r-5)-(r+4)^2=r^2-5r+2r-10-r^2-8r-16= -11 r - 26 (квадрат суммы)
б) 3(a+2b)^2-12ab=3a^2+12ab+12b^2-12ab=3a^2+12b^2 (квадрат суммы)
в) (m-1)(m^2+m+1)-m^3=m^3-1-m^3=-1 (разность кубов)
3.
(18a^5-6*a^4*b)/6a^3=6a^3(3a^2-ab)/6a^3=3a^2-ab=3*25-5*(-10)=75+50=125 (вынесение общего множителя за скобки)
4.
Пусть a-1, a, a+1 - три последовательных натуральных числа.
(a-1)^2+41=a(a+1)
a^2-2a+1+41=a^2+a
3a=42
a=14
14-1=13
14+1=15
ответ: 13, 14, 15.
Объяснение:
Уравнение касательной имеет вид:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
Дана функция:
f(x)=-x^2-4x+2f(x)=−x
2
−4x+2
Найдём значение функции в точке x₀:
f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x
0
)=f(−1)=−(−1)
2
−4⋅(−1)+2=−1+4+2=5
Найдём производную функции:
f'(x)=-2x^{2-1}-4=-2x-4f
′
(x)=−2x
2−1
−4=−2x−4
Найдём производную функции в точке x₀:
f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f
′
(x
0
)=f
′
(−1)=−2⋅(−1)−4=2−4=−2
Подставим найденные значения, чтобы найти уравнение касательной:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))
y=5-2(x+1)y=5−2(x+1)
y=5-2x-2y=5−2x−2
\boxed{y=-2x+3}
y=−2x+3
ответ: y=-2x+3 - искомое уравнение.
1) 0,5*(-0,2)+0,7*(-3/14)=-0,1+(-3/20)=-1/10-3/20=5/20=-1/4 или -0,25