Составим систему: x - y = 5 x*y = 84 Выразим "х" через "у" и подставим полученное значение во второе уравнение. x = 5 + y y*(5 + y)=84 Получаем квадратное уравнение: y*y + 5*y - 84 = 0 Находим дискриминант: D= 5*5 - 4*(-84) = 25 + 336 = 361 = 19*19 Находим возможные действительные значения "у": y1 = ( - 5 + 19)/2 = 7 y2 = ( - 5 - 19)/2 = - 12 Подставляем полученные значения в первое уравнение. Потом выполняем проверку через подстановку полученного значения "х" во второе уравнение. Получаем, что искомые числа: -7 и -12, а также 12 и 7.
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
держи) решение в картинке))