(х+5)^2+(х-7)(х+7)=6х-19
x^2+10x+25+x^2-49-6x+19=0
2x^2+4x-5=0
x^2+2x-2,5=0
D= 4+10=14
-2+кореньз 14
x1=
2
x2=-2-кореньз14
2
f " (x) = (arcsinx + 2arccosx) " = 1/ V(1 - x^2) + 2*( - 1/ V(1 - x^2) =
= -1/ V(1 - x^2)
При x = V3/2 f "(V3/2) = -1/ V( 1 - (V3/2)^2) = -1/ V (1 - 3/4) =
= -1/ V1/4 = -1:1/2 = -2
2) tg1.3 * ctg(-1.4) * sin(-0.9) = tg1.3 *(-ctg1.4)*(-sin0.9) = tg1.3*ctg1.4*sin0.9
1.3 в 1 четверти tg1.3 > 0 1.4 в 1 четверти ctg1.4 > 0
0.9 в 1 четверти sin0.9 > 0
Все значения положительные, следовательно произведение положительно.
Объяснение:
Пусть х км/ ч скорость второго авто, тогда х+10 (км/ч) скорость первого авто. Расстояние каждый из них в 560 км, по времени составляем уравнение:
560 / х - 560/ (х+10) = 1
Приводим к общему знаменателю х(х+10) и отбрасываем его заметив, что х не=0 и х не=-10
Получаем:
560(х+10)-560х=х(х+10)
560х+5600-560х=х^2+10х
х^2+10х-5600=0
Д= 100+4*5600=22500 , 2 корня
х(1) = (-10+150)/2= 70 х(2)=(-10-150)/2 =-80 не м.б скоростью( не подходит под условие задачи)
70+10=80 км/ч скорость первого авто
ответ: 70 и 80 км/ч скорости автомобилей.
(х+5)²+(х-7)(х+7)=6х-19
х²+10х+25+х²-49-6х+19=0
2х²+4х-5=0
D=b²-4ac=16-4*2*(-5)=16+40=56
х=(-b±√D)/(2a)
х1=(-4-2√14)/4=-1-0,5√14
х2=(-4+2√14)/4=-1+0,5√14