Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
1) Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это 3 числа. то есть да может , так как ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел. 2) , целая часть этого числа равна , то есть не может , так как в сумме , и по количеству в этом наборе минимальное есть 16 единиц . 3) так как мы ранее доказали что , есть не менее 16 единиц , и того что удовлетворяет условию .
Выразите:
4,31 • 10 в 5-й степени см- в метрах
1,32•10 в 5-й степени км-в метрах
2,51• 10 в 7-й степени мм- в сантиметрах