Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
В решении.
Объяснение:
Выполните задания в тетради:
Постройте таблицу для построения графиков.
В одной системе координат постройте графики функций:
а) y= x²
б) y= x² - 3
в) y= 1 + x²
График квадратичной функции, парабола.
а) стандартный вариант;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 16 9 4 1 0 1 4 9 16
б) вершина параболы смещена по оси Оу "вниз" на 3 единицы;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 13 6 1 -2 -3 -2 1 6 13
в) вершина параболы смещена по оси Оу "вверх" на 1 единицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 17 10 5 2 1 2 5 10 17
Рисунок прилагается.