Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
1) пусть х км составляет весь путь велосипедиста. 2) тогда первую половину пути х/2 велосипедист проехал со скоростью х/2 : 3 = х : 6 км/ч. 3) вторую половину пути х/2 велосипедист проехал со скоростью х/2 : 2,5 = х : 5 км/ч. 4) по условию на втором участке скорость велосипедиста была больше на 3 км/ч, чем на первом, тогда можно записать выражение: х : 5 - х : 6 = 3. 5) решаем уравнение: х : 5 - х : 6 = 3, (6х - 5х)/30 = 3, х/30 = 3, х = 3 * 30, х = 90. 6) значит, х = 90 км проехал велосипедист. ответ: 90 км.
Объяснение:
При x стремящемся к бесконечности, все выражения в скобках стремятся к 1.