М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mari2909
Mari2909
19.04.2020 11:19 •  Алгебра

Решить уравнения а) 6x+(3x-2)=14 б)8y-(7y-142)=51 в)5=-1-(3-9x) г)9-(8x-11)=12

👇
Ответ:
xLAFFYx
xLAFFYx
19.04.2020
А) 6х+3х-2-14=0 9х=16 х=16/9 =1целая 16/9(дробь)
Б) 8у-7у+142-51=0 у=91
В)-5-1-3+9х=0 9х=9 х=1
Г)9-8х+11-12=0 8х=8 х=1
4,7(98 оценок)
Ответ:
mobidik77
mobidik77
19.04.2020
6х+(3х-2)=14
6х+3х=14+2
9х=16
x = 1 \frac{7}{9}
4,8(21 оценок)
Открыть все ответы
Ответ:
Mariyzilia
Mariyzilia
19.04.2020
Для начала заметим, что в первом уравнении системы обе части строго положительны, поскольку степень положительного числа - всегда число положительное, что мы и видим. Значит, я могу прологарифмировать обе части данного равенства.
Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.

\left \{ {{lg 5^{lg x} = lg 3^{lg y} } \atop {lg (3x)^{lg 3} = lg (5y)^{lg 5} }} \right. \\ \left \{ {{lg 5* lg x = lg 3 * lgy} \atop {lg3 * lg(3x) = lg5 * lg(5y)}} \right.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.

Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения:
lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3
Аналогично,
lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5
Теперь подставляем это в нашу систему:

\left \{ {{lg5*(u - lg3) = lg3*(v - lg5)} \atop {lg3 * u = lg5 * v}} \right.
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
u = \frac{v * lg5}{lg3}

Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
lg 5 * ( \frac{vlg5}{lg3} - lg3) = lg3 * (v - lg5) \\ lg5 * \frac{vlg5 - lg^{2}3 }{lg3} = vlg3 - lg3 * lg5 \\ lg5 * (vlg5 - lg^{2}3) = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v lg^{2} 5 - lg^{2}3 * lg5 = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v( lg^{2} 5 - lg^{2} 3) = 0 \\ v = 0

Сразу находим, что и u = 0.
Далее возвращаемся к обычным переменным:
lg(3x) = 0, откуда 3x = 1, x = 1/3 и
lg(5y) = 0, откуда 5y = 1, y = 1/5

Таким образом, решением системы является пара ( \frac{1}{3} , \frac{1}{5} )
4,7(78 оценок)
Ответ:
smolyarrrovav
smolyarrrovav
19.04.2020

это "обманка"

задача "на внимание"

в обоих неравенствах слева стоят квадраты - они всегда больше равны 0

значит в первом неравенстве справа x - 3 >= 0 x>=3

во втором неравенстве 3 - x >= 0  x<=3

Значит решение может быть только x=3

надо проверить логарифмы - устраивает это или нет (так как других решений не может быть)

надо чтобы тело логарифма равнялась 1, тогда сам логарифм = 0

x^2 + 4x - 20 = 3^2 + 4*3 - 20 = 9 + 12 - 20 = 21 - 20 = 1

x^2 + 2x - 14 = 3^2 + 2*3 - 14 = 9 + 6 - 14 =  15 - 14 = 1

да оба логарифма = 0 и правые части = 0 при х=3

ответ х=3  

4,6(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ