Составим систему: x - y = 5 x*y = 84 Выразим "х" через "у" и подставим полученное значение во второе уравнение. x = 5 + y y*(5 + y)=84 Получаем квадратное уравнение: y*y + 5*y - 84 = 0 Находим дискриминант: D= 5*5 - 4*(-84) = 25 + 336 = 361 = 19*19 Находим возможные действительные значения "у": y1 = ( - 5 + 19)/2 = 7 y2 = ( - 5 - 19)/2 = - 12 Подставляем полученные значения в первое уравнение. Потом выполняем проверку через подстановку полученного значения "х" во второе уравнение. Получаем, что искомые числа: -7 и -12, а также 12 и 7.
Решение Половина пути для второго автомобиля 0,5. Пусть х км/ч – скорость первого автомобилиста, тогда (х + 54) км/ч - скорость второго автомобилиста Время второго автомобиля, за которое он весь путь 0,5 / 36 + 0,5/(x + 54) Время первого автомобиля равно времени второго автомобиля. 1/x = 0,5 / 36 + 0,5/(x + 54) 1/x - 0,5 / 36 - 0,5/(x + 54) = 0 36(x + 54) – 0,5x(x + 54) – 0,5*36x = 0 36x + 1944 – 0,5x² - 27x – 18x = 0 – 0,5x² - 9x + 1944 = 0 I : (-0.5) x² + 18x – 3888 = 0 D = 324 + 4*1*3888 = 15876 = 1262 X₁ = (- 18 – 126)/2 = - 72 не удовлетворяет условию задачи X₂ = (- 18 + 126)/2 = 54 54 км/ч - скорость первого автомобилиста ответ: 54 км/ч
1/5(35)+1/3(-13)=7-4целых1/3=
=-2целых 2/3