Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Построить график линейной функции y=2x+3 и выделить его часть, соответствующую заданному промежутку оси x: (-бесконечность,1]
В задании определена Область определения функции (-бесконечность,1].
Уравнение линейное, значит графиком его является прямая линия.
Чтобы построить график достаточно найти на координатной плоскости две точки и через них провести прямую.
1. точка будет (0,3), а вторая (-1,1)
2. Проведем прямую (оранжевым цветом)
3. Стереть лишнюю часть этой прямой, то есть убрать те значения функции, которые не принадлежат Области Определения, т.е. всю часть прямой которая правее Вертикальной линии, проходящей через х=1 (голубым цветом нарисована)