я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))
ниже.
Объяснение:
так вроде.
1.
a.4x-y=1
3x+2y=-13
4x=y+1
3x+2y=-13
x=y/4+1/4
3(y/4+1/4)+2y=-13
x=y/4+1/4
(11y)/4+3/4=-13
x=y/4+1/4
(11y)/4=-55/4
x=y/4+1/4
y=-5
x=-1
y=-5
b.4x-y=1
y=4x-1
(0;-1),(1;3)
3x+2y=-13
y=-(3x)/2-13/2
(-1;-5),(-5;1)
по двум точкам.
c.4x-y=1
3x+2y=-13
2(4x-y)+(3x+2y)=2*1-13
11x=-11
x=-1
y=-5
2.гиря - y
гантель - x
2y+3x=47,
3y-6x=18
3x=47-2y
3y-6x=18
x=47/3-(2y)/3
3y-6x=18
x=47/3-(2y)/3
3y-6(47/3-(2y)/3)=18
x=47/3-(2y)/3
7y-94=18
x=47/3-(2y)/3
7y=112
x=47/3-(2y)/3
y=16
x=5
y=16
гантель - 5 кг
гиря - 16 кг
3.
3(2x+y)-26=3x-2y
15-(x-3y)=2x+5
-26+6x+3y=3x-2y
15-x+3y=2x+5
-26+6x+3y=3x-2y
3y=3x-10
-26+6x+3y=3x-2y
y=x-10/3
-26+6x+3(x-10/3)=3x-2(x-10/3)
y=x-10/3
9x-36=x+20/3
y=x-10/3
8x=128/3
y=x-10/3
x=16/3
y=x-10/3
x=16/3
y=2