Значит, что в среднем промежутке будет знак минус, в боковых плюс, из чего следует, что на промежутке от минус бесконечности до нуля производная функции положительна (сама функция возрастает), на промежутке от нуля до двух производная отрицательна (функция убывает), а на промежутке от двух до плюс бесконечности производная опять становится положительной, а функция возрастает...
Точка "ноль" - точка максимума
Точка "два" - точка минимума
Фатимка, дальше я не знаю, как решать, но надеюсь, что материал вам пригодится
Пусть х км/ч - скорость пешехода, тогда (х-2) км/ч - скорость туриста Пусть у ч - время туриста, тогда (у - 0,5) ч - время пешехода. По условию ясно, что пешеход км, а турист соответственно км. Составим уравнения: 12/(х-2) - это время туриста, 15/х - это время пешехода. Составим систему уравнений: у = 12/(х-2) у-0,5 = 15/х Подставим первое во второе, получим: 12/(х-2) - 0,5 = 15/х Перенесем: 12/(х-2) - 15/х = 0,5 под общий знаменатель: (12х - 15х + 30) / х (х-2) = 0,5 30 - 3х = 0,5х (2) - х х (2) - это х в квадрате -3х - 0,5х (2) + х + 30 = 0 -0,5х (2) - 2х + 30 = 0 0,5х (2) + 2х - 30 = 0 х (2) + 4х - 60 = 0 Д = 16 + 4*60 = 256 корень из Д = 16 х первый = (-4 + 16) / 2 = 6 км/ч х второй = (-4-16)/2 = -10 - не подходит, т. к. отрицательный Значит скорость пешехода х = 6
f(x) = 1/3 x^3 - x^2 + 6
Продифференциируем функцию
f ' (x) = x^2 - 2x
Приравняем производную к нулю
x^2 - 2x = 0
x (x - 2) = 0
x = 0, или x - 2 = 0
Из вышеназванного следует, что точки экстремума - это ноль и два
Возьмём число один, для проверки знаков в следующих промежутках
(минус бесконечность ; ноль), (ноль ; два), (два ; плюс бесконечность)
f ' (1) = 1 - 2 = - 1
Значит, что в среднем промежутке будет знак минус, в боковых плюс, из чего следует, что на промежутке от минус бесконечности до нуля производная функции положительна (сама функция возрастает), на промежутке от нуля до двух производная отрицательна (функция убывает), а на промежутке от двух до плюс бесконечности производная опять становится положительной, а функция возрастает...
Точка "ноль" - точка максимума
Точка "два" - точка минимума
Фатимка, дальше я не знаю, как решать, но надеюсь, что материал вам пригодится