Объяснение:
Пусть Х часов - время, которое необходимо первому рабочему для выполнения задания.
Тогда время выполнения вторым рабочим равно (Х + 4) часов.
2. Обозначим все задание за 1.
Тогда производительность первого рабочего 1/Х ед/час, второго - 1/(Х + 4) ед/час.
3. По условию задачи сначала первый рабочий работал 2 часа.
Тогда он выполнил 2 * 1/Х = 2/Х часть задания.
Затем второй рабочий работал 3 часа и выполнил 3 * 1/(Х + 4) = 3/(Х + 4) часть задания.
4. Вместе они сделали 1/2 часть работы.
2/Х + 3/(Х + 4) = 1/2.
4 * Х + 16 + 6 * Х = Х * (Х + 4).
Х * Х - 6 * Х - 16 = 0.
Дискриминант D = 6 * 6 + 4 * 16 = 100.
Х = (6 + 10) / 2 = 8 часов - время первого рабочего.
Х + 4 = 8 + 4 = 12 часов - второго.
ответ: За 8 часов может выполнить задание первый рабочий и за 12 часов - второй.
удобно перемножить (у-1)*(у-2) = у²-3у+2 и у*(у-3) = у²-3у
замена: t = у²-3у
получим: (t+2)*t = 15
t²+2t-15 = 0 по т.Виета корни (-5) и (3)
у²-3у = -5 и у²-3у = 3
у²-3у+5 = 0 и у²-3у-3 = 0
D=9-20<0 (нет корней...)
D=9+12 = 21
y₁;2 = (3±√21) / 2