М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Индира1973
Индира1973
20.05.2020 09:27 •  Алгебра

Объём спальных комнат дома равен 1200 кубических метров.известно что на каждый кубический метр приходится3.4×10^9частиц пыли.напишите сколько части пыли присутствует во всех спальных дома . ответ запишите в стандартном виде

👇
Ответ:
Alisarerete
Alisarerete
20.05.2020

1200*3,4*10⁹=1,2*3,4*10¹²=4,08*10¹² частиц пыли

4,5(25 оценок)
Открыть все ответы
Ответ:
REIIKA
REIIKA
20.05.2020
Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1.   а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
4,8(54 оценок)
Ответ:
Jdudn
Jdudn
20.05.2020

ответ: 2

Объяснение:

(1+ax)/(1-ax) *(  (1-a^2*x^2)/(1+2ax+a^2*x^2) +√( (1-b*x)/(1+b*x) ) )

Упростим:

(1-a^2*x^2)/(1+2ax+a^2*x^2) = (1-a*x)*(1+a*x)/(1+ax)^2 = (1-ax)/(1+ax)

(1+ax)/(1-ax) *(  (1-ax)/(1+ax) + √( (1-b*x)/(1+b*x) ) ) =

= 1+  ( (1+ax)/(1-ax) ) * ( √( (1-b*x)/(1+b*x) ) )

x = 1/a  * √( (2a-b)/b ) = 1/a * √( 2a/b  -1)

a*x = √( 2a/b  -1)

b*x =b/a * √( 2a/b  -1)

Для удобства обозначим : √( 2a/b  -1)  = t, тогда  

2a/b = t^2 +1

b/2a = 1/(t^2+1)

b/a = 2/(t^2+1)

a*x = t

b*x = 2t/(t^2+1)

1+b*x =  1+2t/(t^2+1) = (t^2+2t+1)/(t^2+1) = (t+1)^2/(t^2+1)

1-b*x = 1- 2t/(t^2+1) =  (t^2-2t+1)/(t^2+1)  = (t-1)^2/(t^2+1)

√( (1-b*x)/(1+b*x) ) =√( (t-1)^2/(t+1)^2 ) = |(t-1)|/|(t+1)|

1+  ( (1+ax)/(1-ax) ) * ( √( (1-b*x)/(1+b*x) ) ) = 1 +( (1+t)/(1-t) ) * |(t-1)|/|(t+1)|

Из условия :  2a<=b<a<0 или 0<a<b<=2a следует, что  

1<=2a/b <2a/a = 2

 0<=2a/b -1<1

 0<= t < 1

 -1<=t-1<0  → |(t-1)| = 1-t

1<=t+1 <2 → |t+1| = 1+t

Таким образом :

1 +( (1+t)/(1-t) ) * |(t-1)|/|(t+1)|  = 1 + 1 = 2

           

4,4(44 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ