М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nika7912
nika7912
22.05.2023 17:33 •  Алгебра

Объясните тему "полный квадрат", как решать на примере и как раскладывать

👇
Ответ:
Dipper17
Dipper17
22.05.2023

Объяснение:

Пусть дан квадратный трёхчлен x²+b*x+c. Если требуется выделить из этого выражения полный квадрат, то это означает, что это выражение нужно представить в виде (x+d)²+e, где d и e - неизвестные пока числа. Задача сводится к их нахождению. Раскрывая скобки, получаем выражение x²+2*d*x+d²+e, которое должно быть тождественно выражению x²+b*x+c. То есть должно выполняться тождество x²+2*d*x+d²+e≡x²+b*x+с. Это тождество будет иметь место в том случае, если будут выполнены равенства 2*d=b и d²+e=c. Поэтому для выделения полного квадрата нужно решить систему уравнений:

2*d=b

d²+e=c

Из первого уравнения находим d. Подставляя его затем во второе уравнение, находим e.

Примеры:

1) дан квадратный трёхчлен x²+4*x+8. В этом случае b=4 и c=8, поэтому система уравнений будет такова:

2*d=4

d²+e=8

Решая её, находим d=2 и e=4. Поэтому x²+4*x+8=(x+2)²+4.

2) дан квадратный трёхчлен x²-4*x+6. В этом случае b=-4 и c=6, поэтому система уравнений будет такова:

2*d=-4

d²+e=6

Решая её, находим d=-2 и e=2. Поэтому x²-4*x+6=(x-2)²+2.

Пусть теперь дан квадратный трёхчлен общего вида: a*x²+b*x+c, где a≠1. Так как a≠0, то разделив этот трёхчлен на a, получим выражение вида a*(x²+x*b/a+c/a). если теперь обозначить b/a=b1, c/a=c1, то это выражение запишется в виде a*(x²+b1*x+c1). Выделяя полный квадрат из трёхчлена x²+b1*x+c1, получим: a*x²+b*x+c=a*[(x+d)²+e], где d и e находятся из системы уравнений:

2*d=b1

d²+e=c1.

Примеры:

1. дан квадратный трёхчлен 3*x²+4*x+8. В этом случае a=3, b=4 и c=8. Разделив его на 3, получим выражение 3*(x²+4*x/3+8/3). Поэтому в данном случае b1=4/3, c1=8/3 и система уравнений для определения d и e будет такова:

2*d=4/3

d²+e=8/3

Решая её, находим d=2/3 и e=20/9. Поэтому 3*x²+4*x+8=3*[(x+2/3)²+20/9].

2. дан квадратный трёхчлен 3*x²-4*x+6. В этом случае a=3, b=-4 и c=6. Разделив его на 3, получим выражение 3*(x²-4*x/3+2). Поэтому в данном случае b1=-4/3, c1=2 и система уравнений для определения d и e будет такова:

2*d=-4/3

d²+e=2

Решая её, находим d=-2/3 и e=14/9. Поэтому 3*x²-4*x+6=3*[(x-2/3)²+14/9].

4,5(22 оценок)
Открыть все ответы
Ответ:
tatyanamazur90
tatyanamazur90
22.05.2023
Х - монеты Васи, у - монеты Пети

х-6=y+6
х-12=y

Значит, у них сейчас разница в 12 монет (у Васи на 12 монет больше, чем у Пети). Если же ещё и Петя даст 9 монет, то эта разница увеличится на 9+9 = 18 монет. Итого она будет составлять 12+18 = 30 монет.
Получается, что у Васи может в таком случае быть больше на 30 монет. 

Если у одного минимальное количество монет (1 монета), то коэффициент K будет наибольший. А если у одного из них 1 монета, а у второго на 30 монет больше, то получается, что у второго — 31 монета. 31/1 = в 31 раз.

ответ: k = 31 (ответ Г)
4,4(55 оценок)
Ответ:
ZinW
ZinW
22.05.2023
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т :  (Г)     K = 31 \ .
4,5(43 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ