М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sokolovsokol3андрей
sokolovsokol3андрей
28.11.2022 07:15 •  Алгебра

Между какими соседними натуральными числами заключено число: а) √12; b) √18-2

👇
Ответ:
TimurChik2100
TimurChik2100
28.11.2022
А) числами 2 и 3
б) так же между 2 и 3
4,5(91 оценок)
Открыть все ответы
Ответ:
lap85928
lap85928
28.11.2022

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
4,5(16 оценок)
Ответ:
oksiur4enko
oksiur4enko
28.11.2022

task/29646731  Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?

y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4  ⇒ min y  = - 1/4 , при  x = 3 /2  ∈  [-5;5]  

График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика

Функция убывает , если  x ∈ [-5 ; 3/2]  , возрастает , если  x ∈ [ 3/2 ; 5] .

y( -5) =(-5)² - 3*(-5) +2 = 42.    y( 5) =5² - 3*5 +2  = 12 .        

ответ:  42.

ИЛИ

*  Непрерывная на отрезке функция достигает максимума и минимума * *

y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2

y '       " - "                " +"

 1,5 (критическая точка x=1,5 →точка минимума)

y     ↓           min          ↑

y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .

у min = y(1,5) = - 0,25 ;   у max = y(-5) = 42.

4,7(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ