М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кузнечик0705
Кузнечик0705
01.06.2022 23:59 •  Алгебра

И|x-7|-|2x+4|< 5 , скоро контрольная, а я не понимаю

👇
Ответ:
60026072anira
60026072anira
01.06.2022

\frac{(3x-15)(x+6)}{8-x}\geq0

Найдем ОДЗ (Область допустимых значений). Т.к. на ноль делить нельзя, знаменатель не должен быть равен 0. Отсюда находим:

8-x\neq0\Leftrightarrow x\neq8

Дальше можно решить разными

Решим методом интервалов (более удобен):

(3x-15)(x+6)=0\\3x-15=0\\3x=15\\x=5\\x+6=0\\x=-6\\x_{1}=5;x_{2}=-6

Отмечаем точки ОДЗ и решения на координатной прямой, находим знаки для каждого промежутка и находим решение неравенства (см. прикрепленный рисунок).

P.S. Незакрашенные точки значат, что это значение не входит в промежуток (обозначается круглой скобочкой), а закрашенные - наоборот (обозначается квадратной скобочкой).

x\in(-\infty;-6]\cup[5;8)

Решим с правила расщепления:

Т.е. существуют два случая, при которых частное \frac{a}{b} может быть ≥ 0 (Нужно использовать >, < вместо ≥, ≤ соответственно для знаменателя, поскольку он не может быть равен 0):

\left\{\begin{matrix}a\geq0\\b0\end{matrix}\right. или \left\{\begin{matrix}a\leq0\\b

Т.е. решением является совокупность (нас устраивает и то, и другое решение):

\begin{bmatrix}\left\{\begin{matrix}a\geq0\\b0\end{matrix}\right.\\\left\{\begin{matrix}a\leq0\\b

Зная это правило, решаем неравенство:

\frac{(3x-15)(x+6)}{8-x}\geq0\\\frac{3(x-5)(x+6)}{8-x}\geq0

\begin{bmatrix}\left\{\begin{matrix}3(x+6)(x-5)\geq0\\8-x0\end{matrix}\right.\\\left\{\begin{matrix}3(x+6)(x-5)\leq0\\8-x-8\end{matrix}\right.\\\left\{\begin{matrix}(x+6)(x-5)\leq0\\-x

Решим, для удобства, неравенства отдельно.

Первое:

(x+6)(x-5)\geq0

Возможны два случая, когда произведение a × b может быть ≥ 0:

\left\{\begin{matrix}a\geq0\\b\geq0\end{matrix}\right. или \left\{\begin{matrix}a\leq0\\b\leq0\end{matrix}\right.

Т.е. решением является совокупность (нас устраивает и то, и другое решение):

\begin{bmatrix}\left\{\begin{matrix}x+6\geq0\\x-5\geq0\end{matrix}\right.\\\left\{\begin{matrix}x+6\leq0\\x-5\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\geq-6\\x\geq5\end{matrix}\right.\\\left\{\begin{matrix}x\leq-6\\x\leq5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in[5;+\infty)\\x\in(-\infty;-6]\end{matrix}\\x\in(-\infty;-6]\cup[5;+\infty)

Второе:

(x+6)(x-5)\leq0

Возможны два случая, когда произведение a × b может быть ≤ 0:

\left\{\begin{matrix}a\leq0\\b\geq0\end{matrix}\right. или \left\{\begin{matrix}a\geq0\\b\leq0\end{matrix}\right.

Т.е. решением является совокупность (нас устраивает и то, и другое решение):

\begin{bmatrix}\left\{\begin{matrix}x+6\leq0\\x-5\geq0\end{matrix}\right.\\\left\{\begin{matrix}x+6\geq0\\x-5\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\leq-6\\x\geq5\end{matrix}\right.\\\left\{\begin{matrix}x\geq-6\\x\leq5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in\O\\x\in[-6;5]\end{matrix}\\x\in[-6;5]

Вернемся к решению другой совокупности:

\begin{bmatrix}\left\{\begin{matrix}(x+6)(x-5)\geq0\\x8\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\in(-\infty;-6]\cup[5;+\infty)\\x\in(-\infty;8)\end{matrix}\right.\\\left\{\begin{matrix}x\in[-6;5]\\x\in(8;+\infty)\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in(-\infty;-6]\cup[5;8)\\x\in\O\end{matrix}\\\\x\in(-\infty;-6]\cup[5;8)

Учитывая ОДЗ, найдем решение:

\left\{\begin{matrix}x\in(-\infty;-6]\cup[5;8)\\x\neq8\end{matrix}\right.\\x\in(-\infty;-6]\cup[5;8)

Теперь решим другое неравенство.

|x-7|-|2x+4|

Зная, что |x|=\left\{\begin{matrix}x,x\geq0\\-x,x разделим наше неравенство на 4 системы:

\begin{bmatrix}\left\{\begin{matrix}(x-7)-(2x+4)

\begin{bmatrix}\left\{\begin{matrix}x-16\\x\geq7\\x\geq-2\end{matrix}\right.\\\left\{\begin{matrix}x-\frac{2}{3}\\x

\begin{bmatrix}x\in[7;+\infty)\\x\in(-\frac{2}{3};7)\\x\in\O\\x\in(-\infty;-6)\end{matrix}

x\in(-\infty;-6)\cup(-\frac{2}{3};+\infty)


И|x-7|-|2x+4|< 5 , скоро контрольная, а я не понимаю
4,7(17 оценок)
Открыть все ответы
Ответ:

2. График  y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5   изображен  неправильно

вершина параболы в точке (1, 5 ; -0,5) ,  ось абсцисс  пересекает в двух точках  ( 1 ; 0)  и (2 ; 0)   || 1  и 2  корни   трехчлена 2x² - 6x + 4 || ,а ось ординат  в точке (0; 4)  пересекает в двух точках

3.   Все целые числа  кроме    { -1 ; 0 ; 1 ; 2 ; 3 }

другое  Найдите целые решения неравенства  x² - 2x -6 ≤ 0

ответ : { -1 ; 0 ; 1 ; 2 ; 3 }

5.  Решите неравенство  :  (x² -5x +6) / ( x²  -7x)  ≤  0

- - - - - - -

(x² -5x +6) / ( x²  -7x)  ≤  0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔

{  x ( x - 2)(x - 3) ( x-7 )  ≤ 0 ;  x( x - 7 ) ≠ 0 .

решается методом интервалов

+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +

ответ :   x ∈ (0 ; 2] ∪ [3 ; 7) .


задания по алгебре :)))
4,7(13 оценок)
Ответ:

1) Построим графики функций y=2\sqrt{x} и прямую параллельную оси ОХ y=1.5

Графики пересекаются в точке (0.5625; 1.5), где x = 0.5625 - корень данного уравнения

2) Построим график функции y=\sqrt{x} и прямую y=2x-4 проходящую через точки (0;-4), (2;0). Отсюда абсцисса точки пересечения двух графиков x=\dfrac{17+\sqrt{33}}{8}

3) Построим график функции y = √x и прямую y = 2 - 4x, проходящую через точки (0;2), (1;-2). Абсцисса точки пересечения двух графиков равна x=\dfrac{17-\sqrt{33}}{32}

4) Построим график функции y = 0.4√x и прямую y = 1 - 2x, проходящую через точки (0;1), (1;-1). Абсцисса точки пересечения двух графиков равна x=\dfrac{26-\sqrt{51}}{50}


Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
4,6(81 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ