В решении.
Объяснение:
Одночлен, у которого единственный числовой множитель стоит на первом месте и буквенные множители в различных степенях не повторяются, называется одночленом стандартного вида.
Числовой сомножитель называют коэффициентом одночлена.
Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.
Одночлен Станд.вид Коэффиц. Степень
1,2с⁴с⁸ 1,2с¹² 1,2 12
0,6m²n³*4m⁵n² 2,4m⁷n⁵ 2,4 7+5=12
2/7a²*3,5b a²b 1 2+1=3
-5x²*0,2xy -x³y -1 3+1=4
-1,6x³y⁶*0,5x²y⁵ -0,8x⁵y¹¹ -0,8 5+11=16
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
tg(-11П/6)=tg(-11П/6+2п)=tg(П/6)=√3/3
cos п + ctg(4п/3)=cos п + ctg(4п/3-п)=cos п + ctg(п/3)=-1+√3/3