М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
оля199925867452
оля199925867452
29.06.2021 02:14 •  Алгебра

Вгимназии обучается 400 учащихся : учащиеся первого корпуса составляют 40% от общего числа, в третьем корпусе учащихся в два раза меньше, чем в первом . верно ли утверждение,что во вотором корпусе гимнании обучается столько же учащихся сколько и в первой? представьте ответ в виде круговой диаграммы

👇
Ответ:
SlavaKirja
SlavaKirja
29.06.2021

400/100*40=160 уч. - обучается в 1 корпусе

160/2=80 уч - обучается в 3 корпусе

400-(80+160)=160 уч - обучается во 2 корпусе.

Утверждение верное, что в 1 и 2 корпусе обучается одинаковое количество обучающихся.

4,7(14 оценок)
Открыть все ответы
Ответ:
naxim23432
naxim23432
29.06.2021

1) Найти наибольшее значение функции

y = 1 - log₉ 3^(-x) на отрезке [-1; 5]

Преобразуем функцию

y = 1 - 0,5log₃ 3^(-x)

y = 1 + 0,5х·log₃ 3

y = 1 + 0,5х

находим производную:

y' = 0,5

Производна всегда больше нуля, следовательно, функция у возрастает.

Наибольшее значение находится на правом краю интервала [-1; 5], т.к при х = 5.

у наиб = у(5) = y = 1 + 0,5·5 = 3,5

 

2) Решить уравнение: 13^(5x-1) · 17^(2x-2) = 13^(3x+1).

  17^(2x-2) = 13^(3x+1): 13^(5x-1)

  17^(2x-2) = 13^(-2x+2)

  17^(2x-2) = 1/13^(2x-2)

  (17·13)^(2x-2) = 1

  (17·13)^(2x-2) = (17·13)^0

2x - 2 = 0

2х = 2

х = 1

 

3) Вычислить значение выражения: 8^log8 6 + 625^log25 sqrt(13)

8^log₈ 6 + 625^log₂₅ √13 = 6 + 25^2log₂₅√13 = 6 + 25^log₂₅13 = 6 + 13 = 19

4,4(87 оценок)
Ответ:
daliiss
daliiss
29.06.2021

Необходимым условием сходимости ряда, но не достаточным, является стремление общего члена к нулю.

1) \sum_{n=1}^{\infty}\frac{1}{n5^n}

Как видим общий член при n -> ∞ стремится к нулю. Ряд у нас положительный, применим признак Даламбера (\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| )

 

\lim_{n \to \infty} \frac{n5^n}{(n+1)5^{n+1}} = \frac{1}{5}<1

т.е. ряд сходится абсолютно

 

2) Ряд является знакочередующимся, применим признак Лейбница (Если члены знакочередующегося ряда убывают по модулю, то ряд сходится.)

\lim_{n \to \infty} |\frac{n}{2^n(n+1)}|=0

- ряд сходится. Исследуем также на абсолютную и условную сходимости (Сходящийся ∑a(n) называется сходящимся абсолютно, если сходится ряд из модулей ∑|a(n)|, иначе — сходящимся условно.)

\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}\frac{n}{2^n(n+1)}

воспользуемся признаком сравнения

\sum_{n=1}^{\infty}\frac{n}{2^n(n+1)}<\sum_{n=1}^{\infty}\frac{1}{2^n}

ряд справа сходится, т.е. наш ряд сходится абсолютно.

 

3) \sum_{n=3}^{\infty}\frac{n^2-5}{5^n}*(x-5)^n

Воспользуемся признаком Даламбера

\lim_{n \to \infty} \frac{(n+1)^2 - 5}{5^{n+1}}\frac{5^n}{n^2-5}|x-5|=\frac{1}{5}|x-5|

Наш ряд будет сходится, если ⅕|x-5|<1 ⇔ |x-5|<5 ⇔ -5<x-5<5 ⇔ 0<x<10

Остается исследовать сходимость на концах интервала:

a) x=0

   \sum_{n=1}^{\infty}\frac{(-5)^n(n^2-5)}{5^n}=\sum_{n=1}^{\infty}(-1)^n(n^2-5)

ряд расходится

б) x=10

  \sum_{n=3}^{\infty}\frac{5^n(n^2-5)}{5^n}=\sum_{n=3}^{\infty}(n^2-5)

ряд расходится

Т.е. область сходимости ряда (0, 10)

4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ