Решим неравенство методом интервалов: Нули функции будут в точках: 4; 1,5; 2/3 (просто приравнять уравнения в скобках к нулю) Отмечаем нули функции на координатной прямой в порядке их возрастания. Все точки выколоты, т.к. неравенство строгое. Для того чтобы узнать как расположить знаки под интервалами выбираем произвольное число кроме тех, которые являются нулями функции. Возьмем, например, 0. Если х = 0, то 3*0-2= -2 (знак отрицательный) 0-4= -4 (знак отрицательный) 3-2*0 = 3 (знак положительный) Перемножаем все числа (-2)(-4)*3 = 24 (знак положительный) => под интервалом будет "+". Нуль находится в пределах от минус бесконечности до 2/3. Ставим там "+". Далее знаки чередуются. Теперь нам нужен ответ. Т.к. у нас < следовательно нам нужно все что меньше нуля, тобишь под знаком "-". Выписываем интервалы и получаем конечный ответ.
По теореме Виета сумма и произведение корней приведенного уровнения вида : x²+px+q = 0, где p = x1 + x2 ( коэффициент p имеет противоположный знак, т.е. если p = +18, то сума корней уравнения x1 +x2 будет равна -18) и q = x1*x2. 1) x²+18x-11 = 0 сумма корней x1 + x2 = -18; 2) x²+27x-24 = 0 произведение корней x1 * x2 = -24. Сумма и произведение неприведенных уравнений вида : ax²+bx+c = 0, сумма корней x1 + x2 = -b/a, произведение корней x1*x2 = c/a. 3) 5x²+10x-3 = 0 сумма корней x1+x2 = -10/5 = -2; 4) 3x²-16x+9 = 0 произведение корней x1*x2 = 9/3 = 3. 5) x²+px-16=0 допустим x1 = 8 в этом приведенном уравнении можно найти произведение корней, ведь как мы знаем x1*x2 = q следовательно, 8*x2 = -16 x2 = -16/8 = -2 вот мы нашли второй корень, теперь найдём коэффициент p, т.е. сумму корней x1+x2 = -p 8-2 = -6 ответ: x2 = -2; p = -6. Можно проверить подставив это в уравнение.