М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alenka0810
alenka0810
19.11.2020 03:02 •  Алгебра

Можете объяснить мне как решать системы уравнений? ничего не понимаю. желательно объяснить сложение, подстановка, графический.

👇
Ответ:
Eliseevka12
Eliseevka12
19.11.2020

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.

2. Подставить полученное выражение вместо у в другое уравнение системы.

3. Решить полученное уравнение относительно х.

4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.

5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.

Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.

Пример 1. Решить систему уравнений

Система уравнений

Решение.

1) Выразим х через у из первого уравнения системы: х = 5 - 3у.

2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.

3)Решим полученное уравнение:

Система уравнений

4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если Al63.jpg то Уравнение

5)    Пары (2; 1) и Al65.jpg решения заданной системы уравнений.

ответ: (2; 1); Al65.jpg

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений

Система уравнений

Решение.

Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: Система уравнений

Вычтем второе уравнение системы из ее первого уравнения:

Система уравнений

В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:

Система уравнений

Эту систему можно решить методом подстановки. Из второго уравнения находим Уравнение Подставив это выражение вместо у в первое уравнение системы, получим

Система уравнений

Осталось подставить найденные значения х в формулу Формула

Если х = 2, то

Решение

Таким образом, мы нашли два решения системы: Решение

ответ:  ответ

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Система уравнений

Решение. Введем новую переменную Al617.jpg Тогда первое уравнение системы можно будет переписать в более простом виде: Уравнение Решим это уравнение относительно переменной t:

4,4(63 оценок)
Открыть все ответы
Ответ:
Max82828
Max82828
19.11.2020
Длину дистанции обозначим S м. 
Скорость Маши v(M) = S/35 м/мин
Скорость Коли v(K) = S/28 м/мин 
Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4
Если бы они начали одновременно, то Коля пробежал бы
5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли.
А на самом деле Маша пробежала 0,75 от пути Коли.
Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м.
А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4
x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши.
3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше.
Пусть Коля начал раньше на а мин.
Значит, когда Маша начала, он уже пробежал а/35 часть пути.
Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части.
Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от 
старта Маши до встречи. А всё вместе он пробежал 4/7 пути.
a/35 + 5(35-a)/315 = 4/7
Умножаем всё на 315 = 35*9 = 45*7
9a + 175 - 5a = 4*45 = 180
4a = 5
a = 5/4
Ближе всего это к 1 мин. Видимо, правильный ответ:
Г) Коля на 1 мин раньше.
4,7(93 оценок)
Ответ:
kotyaraasm
kotyaraasm
19.11.2020
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ...
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116

2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.
4,6(69 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ