б)a(n)=3n+9
a(1)=12
a(30)=99
S=(a(1)+a(30))/2*n=(12+99)/2*30=1665
Объяснение:
а)существует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475. Вот мы и нашли сумму всех нечётных двузначных чисел.
1. Из условия задачи - курицы у нас все разные. То есть если у нас мы возьмем какой-то набор птиц, в котором есть курица; и заменим эту курицу на другую, то получится другой набор
В таком понимании задачи, всего различных комбинаций птиц - 512 (учитывая комбинацию без птиц вовсе, каждую птицу можно взять или не взять, птиц всего 9, 2^9 вариантов). Воспользуемся кругами Эйлера к этой задаче: пусть круги означают кол-во комбинаций БЕЗ указанных птиц
БЕЗ гусей у нас 2^7 = 128 вариантов
БЕЗ кур - 64, а БЕЗ уток - 32 варианта
Далее, найдем кол-во комбинаций без гусей и без уток, без гусей и без кур, без кур и без уток. Без всех птиц у нас 1 единственная комбинация. Используя это, найдем кол-во вариантов для каждого из подмножества. Далее, вычтем из 512 все эти подмножества. Получим количество вариантов, где точно есть и утки, и гуси, и куры
ответ: 315