М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
saraikinacaterina
saraikinacaterina
20.08.2021 01:26 •  Алгебра

1) 9 делённое на b² + 3b - 3 делённое на b 2) 8b + 5-9b² делённое на b решите 40

👇
Ответ:
bagaeva02
bagaeva02
20.08.2021

1)\frac{9}{b^{2}+3b}- \frac{3}{b}= \frac{9}{b(b+3)}- \frac{3}{b}= \frac{9-3b-9}{b(b+3)}= -\frac{3b}{b(b+3)}=- \frac{3}{b+3}\\\\2)8b+\frac{5-9b^{2}} {b} =\frac{8b^{2}+5-9b^{2}}{b}= \frac{5-b^{2}} {b}

4,8(90 оценок)
Ответ:
deepytat
deepytat
20.08.2021

1) 9 / (b² + 3b) - 3 / b = 3 / b*(3 / (b + 3) - 1) = 3 / b*(3 - b - 3 / (b+3)) =

= 3 / b * -b / (b+3) = -3 / (b + 3)

2) 8b + (5 - 9b²) / b = 8b + 5/b - 9b = 5/b - b

4,4(2 оценок)
Открыть все ответы
Ответ:
F (x) =  - x² -2x +8  ;
* * * * *    f(x) = 9 - (x+1)²     * * * * *   =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2)   * * * * *
1.  ООФ : ( - ∞ ; ∞) .
2. Функция не четной и не нечетной  * * * * * и не периодической  * * * * * .
3 Точки пересечения функции с координатными осями :
а) с  осью  y : x =0⇒ y = 8  ; A(0 ;8)      * * * * *  -0² -2*0 +8 =8  * * * * *
б) с  осью  x :  y =0 ⇒  - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 .
B(-4; 0) и C(2;0).
* * * * * D/4 =  (2/2)² -(-8) = 9 =3²  * * * * *
4. Критические точки функции.
* * * * *    значения аргумента (x)  при которых производная =0 или не существует)    * * * * *
 f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )'  +(8 )' =  -2* x - 2(x )' + 0 =  -2x - 2  = -2(x+1);
  f ' (x) = 0 ⇒ x = -1  (одна критическая  точка) .
5. Промежутки монотонности  :
а) возрастания : 
f ' (x) > 0 ⇔  -2(x+1) > 0 ⇔  2(x+1) < 0 ⇔ x < -1 иначе  x∈( -∞; -1).
б) убывания :
f ' (x) < 0 ⇔  -2(x+1) <  0 ⇔  2(x+1) > 0 иначе x∈ ( 1 ;∞ ).
6. Точки экстремума:
* * * * *   производная меняет знак  * * * * *
x =  - 1.    
7. Максимальное и минимальное значение функции :
Единственная точка экстремума  x =  - 1 является  точкой максимума ,
т.к.  производная меняет знак с минуса на  плюс .
max(y) = - (-1)² -2(-1) +8 = 9.
8. промежутки выгнутости и выпуклости кривой; найти точки перегиба.
* * * * *  f ' ' (x)  =0    * * * * *
 f ' ' (x) =( f'(x))' =( -2x -2) '  = -2  < 0 ⇒ выпуклая  в ООФ  здесь R  by  (-∞; ∞)
не имеет точки перегиба (точки при которых  f ' ' (x) = 0 ) .

P.S.   y = -x² -2x +8  = 9 -(x+1)²   .
График  этой функции парабола вершина в точке  M(- 1; 9) ,  ветви направлены вниз , что указано во второй строке решения .
 Эту  функцию предлагали наверно для "тренировки".
4,6(98 оценок)
Ответ:
lena101992
lena101992
20.08.2021

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ