ответ: 3
Объяснение:
графическое решение короче...
(график логарифмической функции будет всегда ниже графика показательной функции... кроме одной точки)
1) ОДЗ: 6х-х^2-7>0
х^2-6х+7<0 —> х € (3-V2; 3+V2)
2) т.к. показательная функция 7 в любой степени (монотонно возрастает) никогда не принимает отрицательных значений и никогда не бывает =0, то можно умножить обе части неравенства на (7 в степени |х-3|), которое всегда > 0 и знак неравенства не изменится...
получим: log2(6х-х^2-7) >= 7 в степени |х-3|
3) обе функции (и логарифмическая и показательная) являются монотонно возрастающими (оба основания больше 1);
логарифмическая функция примет свое максимальное значение в точке максимума аргумента (парабола, ветви вниз, абсцисса вершины х0=-b/(2a)=3; y0=log2(18-9-7)=log2(2)=1), т.е. все прочие значения логарифма будут точно меньше 1...
показательная функция свое минимальное значение примет в точке х=3; (7 в степени |3-3|)=7^0=1 и все прочие значения показательной функции будут точно больше 1...
т.е. графики обеих функций пересекаются ровно в одной точке: х=3
1)х =1; у= -2
х=3 ; у=0
х=5 ; у=2
Далі будуєш графік і вписуєш в нього точки подані вище, і зєднуєш прямою лінією. А що до функції то вона зростаюча.
2)х =1; у=3
х=3 ; у=1
х=5 ; у= -1
Далі будуєш графік і вписуєш в нього точки подані вище, і зєднуєш прямою лінією. А що до функції то вона спадаюча.