Для того, чтобы найти точку пересечения прямых, заданных уравнениями y = x + 2 и y = 3x - 2 мы с вами составим и решим систему линейных уравнений.
Система уравнений:
y = x + 2;
y = 3x - 2.
Решать систему уравнений будем одним из методов — методом подстановки. Давайте в первое уравнение системы вместо y подставим выражение из второго уравнений.
Система уравнений:
3x - 2 = x + 2;
y = x + 2;
3x - x = 2 + 2;
2x = 4;
x = 4 : 2;
x = 2.
Система уравнений:
x = 2;
y = x + 2 = 2 + 2 = 4.
ответ: (2; 4).
Объяснение:
Так как x = 0 не является корнем уравнения, поделим обе части на x.
Обозначим правую часть как f(x). Найдём производную этой функции:
Заметим, что при x = 1 числитель равен нулю. Разложим его на множители:
. Второй множитель разложить нельзя, так как, приравняв его к нулю, мы не сможем найти корни, ибо D < 0. Найдём знаки производной (см. фото 1). Зная это, можем прикинуть график функции (см. фото 2). Точка локального минимума - x = 1. f(1) = 4.
a = k (k - какое-то число) - прямая, параллельная оси Ox. По графику видно, что при a < 4 имеется ровно одно пересечение, то есть один корень.
ответ: