1)f(x)= x^4-2x^2-3; Найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1) Найдем критические точки, т. е f´(x)=0 4х (х-1)(х+1)=0 х=0 или х=1 или х=-1 -__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0 В точке х=-1 производная меняет знак с – на +, значит это точка минимума; В точке х=0 производная меняет знак с +на -, значит это точка максимума; В точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 Найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² Найдем критические точки, т. е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и Х+4≠0; х≠-4 Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0 f´(-5)= (-5+2)(-5+6)=-3*1<0 f´(-3)= (-3+2)(-3+6)=-1*3<0 f´(0)= (0+2)(0+6)=2*6>0 В точке х=-6 производная меняет знак с + на - значит это точка максимума; В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ; В точке х=-2 производная меняет знак с – на +, значит это точка минимума; Удачи!
Если разных цветов меньше 10, то по-любому найдется 11 кубиков одного цвета. Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета. Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета. Теперь пусть у нас больше 10 разных цветов. Например, 11. Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов. Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще. Таким образом, мы всегда можем найти или 11 одинаковых, или 11 разных кубиков.
1) -5х+30=3х-2
-8х=-32
х=4
2) 6х-6х-6=5х
-5х=6
х=-1,2
3) 3х-6+6х=7х-2х-2
4х=4
х=1
4) 2х+4х-4=5х+7
х=11