а) xp < yp
б) xp > yp
в) 1/x > 1/y
г) 1/x < 1/y
Объяснение:
а) Представь, что у тебя x = 1, а y = 2. P = любому положительному числу. Для наглядности возьмём 1.
Если ты умножишь x на p, то получишь 1 * 1 = 1. Если y умножишь на p, то получишь 2 * 1 = 2. Следовательно, у тебя произведение x и p будет меньше, чем y и p. Т.к изначально известно, что x < y.
б) Продолжаю объяснение из а. X и Y оставляем такими же: x = 1, y = 2. Однако если p - любое отрицательное число, то произведение x и p будет больше, чем y и p. Допустим, в этом примере p у нас будет = -1
Тогда получим x * p = 1 * (-1) = -1, а y * p = 2 * (-1) = -2. Тут не так определяется величина числа, как с положительными числами. В случае с отрицательными числами, больше будет то число, которое ближе к нулю. В данном примере ближе к нулю будет -1.
в) Чем меньше число на которое ты делишь, тем больше получается значение. К примеру, пусть x = 2, а y = 4. Тогда получим :
1/x = 1/2 = 0,5
1/y = 1/4 = 0,25
г) Пусть x = -2, а y = -4. тогда:
1 / (-2) = -0,5
1 / (-4) = -0,25
-0,25 > -0,5 т.к ближе к нулю.
Объяснение:
№8
Дано:
АН – высота;
ВН=4 дм;
НС=16 дм;
АВ=DC.
Проведём высоту DF к стороне ВС.
Рассмотрим прямоугольные треугольники АНВ и DFC.
АВ=DC по условию;
Так как основания трапеции паралельны, а АН и DF высоты, проведенные к основанию ВС, то АDFH прямоугольник. Следовательно АН и DF равны.
Тогда прямоугольные треугольники АНВ и DFC равны по гипотенузе и катету. Следовательно FC=BH=4;
HF=HC–FC=16–4=12 (дм).
Так как АDFH – прямоугольник (доказано ранее), то AD=HF=12 (дм)
ответ: Б) 12 дм.
№9
Рассмотрим треугольник АВН.
Так как АН – высота (по условию), то угол АНВ=90, тогда треугольник АВН прямоугольный.
Сумма углов при одной его стороне равна 180°, тогда:
угол ABH= 180°– угол BAD=180°–150°=30°
В прямоугольном треугольнике напротив угла в 30° лежит катет вдвое меньший гипотенузы, тоесть:
АН=АВ÷2=10÷2=5 см.
S=ah, где S–площадь паралелограмма, а– сторона паралелограмма, h– высота паралелограмма.
Подставим значения:
S=15*5=75 см²
ответ: В) 75 см²