1 cлучай: a и b одинаковых знаков ab>=0 Воспользуемся неравенством: о средних (x+y)/2>=√xy |ab|=ab<=(a^2+b^2)/2=1/2 2ab<=1 Преобразуем: (a+b)^2-2ab=1 (a+b)^2=1+2ab<=2 Откуда |a+b|<√2 -√2<=a+b<=√2 ЧТД 2 cлучай: a и b разных знаков. Тут уже поинтересней: имеем: a^2=1-b^2<=1 тк b^2>0 |a|<=1 Анологично |b|<=1 тк одно положительное другое отрицательное,то можно сделать оценку: 0 <=a<=1 -1<=b<=0 Сложим эти сравнения: -1<=a+b<=1 А значит и верно что -√2<a+b<√2 что удовлетворяет рамкам неравенства. тк √2>1 чтд Заметим что равенство выполняется когда a=b=+-1/2
1) 2/a -7/b =2b-7a /ab 2)с/ab + a / cd=c^2d+a^2b / abcd 3)b/a ^ 2 - a/b ^ 2 =b^3-a^3 / a^2b^2 4)5/a+ 3a - 5 / a + 1=5(a+1)+a(3a-5) a(a+1)=5a+5+3a^2-5 / a(a+1)=5a+3a^2 / a(a+1) здесь вопрос по поводу самого условия 3a и 1 отдельно от дроби или включены в знаменатель? я решала под знаменателем. если отдельно, на 5)m + n / m - n + m / m - n=m+n+m /m-n=2m+n /m+nпиши, решу по другому. 6)p / q - p / p /q =p/q-p * q/p=q/ q-p 7)1 / y ^ 3 + 1 - y ^ 2 / y ^ 5= 8) 1- xz / xyz - 1 - ax / axyz =(1-xz)y-(1-ax)z / axyz=y-xyz-z+axz / axyz
9)1 + b / abc + 1 - a / a ^ c =здесь что-то с условием не так. a в степени с или какой-то все-таки другой знаменатель?
2x² + 6xy - 5x² - 9xy + 3y²=х²(2-5)+ху(6-9)+3у²=-3х²-3ху+3у²=3(у²-ху-х²)