М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Batman89
Batman89
06.11.2021 08:31 •  Алгебра

1.96 внесите множитель под знак корня:

👇
Ответ:
Aruuuuuuuu
Aruuuuuuuu
06.11.2021

ответ на фото. В первом у вас не правильно решено


1.96 внесите множитель под знак корня:
4,7(24 оценок)
Открыть все ответы
Ответ:
svetik3333
svetik3333
06.11.2021

В решении.

Объяснение:

Представьте в виде многочлена выражение:

(0,8a + 0,9b)(0,8a - 0,9b) = 0,64a² - 0,81b².

Представьте в виде многочлена выражение:

(8x⁴+9y)(8x⁴−9y)  = 64х⁸ - 81у².

Разложите на множители:

0,01m⁶−2,56n⁶ = (0,1m³ - 1,6n³)(0,1m³ + 1,6n³).

Разложите на два множителя:

36x²−1,21y² = (6х - 1,1у)(6х + 1,1у).

Представьте в виде многочлена выражение:

(0,4a+3b)(0,4a−3b)  = 0,16a² - 9b².

Выполните умножение многочленов:

(2a²+0,1)(2a²−0,1)  = 4a⁴ - 0,01.

Разложите на два множителя:

49m²−289n² = (7m - 17n)(7m + 17n).

Разложите на множители:

a⁴−0,16b⁴ = (a² - 0,4b²)(a² + 0,4b²).  

Выполните умножение многочленов:

(0,3x+6)(0,3x−6)  = 0,09x² - 36.

Разложите на множители:

0,49m⁶−225n⁶ = (0,7m³ - 15n³)(0,7m³ + 15n³).

Разложите на два множителя:

0,09x²−1,96y² = (0,3x - 1,4y)(0,3x + 1,4y).

Представьте в виде многочлена выражение:

(7x⁴+0,8y³)(7x⁴−0,8y³) = 49x⁸ - 0,64y⁶.  

Выполните возведение в квадрат:

(1,6+0,5a)² = 2,56 + 1,6a + 0,25a².

4,6(16 оценок)
Ответ:
LaimZ
LaimZ
06.11.2021
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
4,5(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ