Участник Знаний
1.~ a)~ (x+4)^2=x^2+8x+16\\ b)~ (y-5x)^2=y^2-10xy+25y^2\\ c)~ (3a-2)(3a+2)=(3a)^2-2^2=9a^2-4\\ d)~ (c-2b)(c+2b)=c^2-(2b)^2=c^2-4b^2
2. Разложить на множители:
a)~ x^2-81=x^2-9^2=(x-9)(x+9)\\ b)~ y^2-4y+4=(y-2)^2
в пункте б) опечатка, так что предположил как должно быть
c)~ 36x^4y^2-169c^2=(6x^2y)^2-(13c)^2=(6x^2y-13c)(6x^2y+13c)\\ d)~ (x+1)^2-(x-1)^2=(x+1-x+1)(x+1+x-1)=2\cdot 2x=4x
3. Упростить выражение:
(c+6)^2-c(c+12)=c^2+12c+36-c^2-12c=36
4. Решите уравнение:
a)~ (x+7)^2-(x-4)(x+4)=65\\ x^2+14x+49-x^2+16=65\\ 14x=0\\ x=0
b)~ 49y^2-64=0\\ y^2=\dfrac{64}{49}~~\Rightarrow~~~ y_{1,2}=\pm\dfrac{8}{7}
5. Выполнить действия:
a)~ (4a^2+b^2)(2a-b)(2a+b)=(4a^2+b^2)(4a^2-b^2)=16a^4-b^4\\ b)~ (b^2c^3-2a^2)(b^2c^3+2a^2)=(b^2c^3)^2-(2a^2)^2=b^4c^6-4a^4
6*.Докажите неравенство:
4x^2+9y^2>12xy-0.1\\ 4x^2-12xy+9y^2>-0.1\\ (2x-3y)^2>-0.1
Что и требовалось доказать
Объяснение:
1 - Петя
2 - Вася
a1,2 - количество двоек
b1,2 - количество троек
c1,2 - количество четверок
d1,2 - количество пятерок
a1 = b2
b1 = c2
c1 = d2
d1 = a2
Получается: 2a1 + 3b1 + 4c1 + 5d1 = 2a2 + 3b2 + 4c2 + 5d2 значит,
2b2 + 3c2 + 4d2 + 5a2 = 2a2 + 3b2 + 4c2 + 5d2
b2 + c2+ d2 = 3a2 т.к b2 + c2 + d2 = 16-a2 > 16=4a2 > a2=4