-4(а+5)(а-2) = -4(а²-2а+5а-10) = -4а²+8а-20а+40 = -4а²-12а+40
а)х∈ (-3, 6)
б)х∈ (- ∞, -1)
Объяснение:
а)3х+9>0
x-5<1
3x> -9
x<1+5
x>-3 х∈ (-3, ∞)
x<6 х∈ (- ∞, 6)
Отмечаем на числовой оси решение первого неравенства и решение второго неравенства и ищем пересечение решений, то есть, то решение, которое подходит и первому и второму неравенству.
Это решение х∈ (-3, 6)
Неравенства строгие (-3 и 6 не входят в интервал решения), скобки круглые.
б)2-у>=3
3y-1<=2
-y>=3-2
3y<=2+1
y<= -1 х∈ (- ∞, -1)
y<=1 х∈ (- ∞, 1)
Отмечаем на числовой оси решение первого неравенства и решение второго неравенства и ищем пересечение решений, то есть, то решение, которое подходит и первому и второму неравенству.
Это решение х∈ (- ∞, -1)
Неравенства нестрогие, но используется знак - бесконечность, скобки круглые.
- 4(a + 5)(a - 2) = - 4(a² - 2a + 5a - 10) = - 4(a² + 3a - 10 ) = - 4a² - 12a + 40