пусть собственная скорость катера будет = х км/ч, а скорость течения реки = у км/ч
значит скорость катера по течению реки составит: (х+у) км/ч, а против течения (х-у) км/ч
за 1 час по течению катер проплыл 18 км => 1*(x+y) = 18
против течению катер плыл такое же рассстояние, но за 1,5 часа (2,5 - 1) ,т.е. 1,5(х-у) = 18
объединим полученные уравнение в систему и решим их
{ 1*(x+y) = 18
{1,5(х-у) = 18
***
{х = 18 - у
{ 27 - 3у = 18
***
{ у = 3
{ х = 15
скорость течения реки 3 км/ч, а собственная скорость катера 15 км/ч
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
a₁ = - 1 a₂ = 3
a₂ = a₁ + d
d= a₂ - a₁ = 3 - ( - 1) = 3 + 1 = 4
a₅ = a₁ + 4d = - 1 + 4 * 4 = - 1 + 16 = 15
a₅ = 15