Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
Нам нужно найти при каких значениях а уравнение (а + 4)х = а - 3 не имеет корней.
Давайте сначала выразим из уравнения переменную х через а.
Разделим обе части уравнения на скобку (а + 4):
х = (а - 3)/(а + 4).
Рассмотрим полученное равенство.
В выражении стоящем в правой части равенства есть знак дроби ( иными словами деления).
Нам известно, что на ноль делить нельзя. Найдя те значения а которые обращают знаменатель в ноль и будут ответом на вопрос задания.
а + 4 = 0;
а = - 4.
При а = - 4 знаменатель дроби обращается в 0, следовательно уравнение не имеет корней.
ответ: б = -4.