Найдите точки пересечения прямых,предварительно построив графики указанных линейных функций 1)у=2х-3 и у=1/2х потом проверьте результаты находя точки пересечения графиков данных линейных функций аналитическим
Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Аналитически:
2x-3=1/2x
2x-1/2x=3
1,5x=3
x=2
y=2*2-3=1