1. 3,4·2·2,2 = 14,96 м³ объём бани.
2. Печь "Орион" не подойдёт по отапливаемому объёму.
Печь "Кентавр" обойдётся в 23 000 руб.
Печь "Ока" обойдётся в 20 000+6 000 = 26 000 руб.
26 000-23 000 = 3 000 руб - на столько дешевле обойдёт дровяная печь.
3. 1 600·3,5 = 5 600 руб в год эксплуатация дровяной печи.
3·2 800 = 8 400 руб в год обойдётся электрическая печь.
8 400-5 600 = 2 800 руб дешевле обойдётся дровяная печь.
4. 23 000·3% = 23 000·0,03 = 690 руб скидка на товар.
23 000-690 = 22 310 руб цена печи с учётом скидки.
900·25% = 900·0,25 = 225 руб скидка на доставку
900-225 = 675 руб стоимость доставки со скидкой.
22 310+675 = 22 985 руб стоимость печи "Кентавр" с учётом доставки и всех скидок.
В решении.
Объяснение:
Решить неравенства:
1) 6х²-7х+1<0
Приравнять к нулю и решить как квадратное уравнение:
6х²-7х+1=0
D=b²-4ac = 49-24=25 √D=5
х₁=(-b-√D)/2a
х₁=(7-5)/12
х₁=2/12
х₁=1/6;
х₂=(-b+√D)/2a
х₂=(7+5)/12
х₂=12/12
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1/6 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от 1/6 до 1, то есть, решения неравенства находятся в интервале
х∈ (1/6; 1), или 1/6 < x < 1.
Решение неравенства: х∈ (1/6; 1).
Неравенство строгое, скобки круглые.
2) 5х²-4х-1>0
Приравнять к нулю и решить как квадратное уравнение:
5х²-4х-1=0
D=b²-4ac =16+20=36 √D=6
х₁=(-b-√D)/2a
х₁=(4-6)/10
х₁= -2/10
х₁= -0,2;
х₂=(-b+√D)/2a
х₂=(4+6)/10
х₂=10/10
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (как в неравенстве), при значениях х от - бесконечности до -0,2 и при х от 1 до + бесконечности.
Решение неравенства: х∈ (-∞; -0,2)∪(1; +∞).
Неравенство строгое, скобки круглые.
3) х²+8х<0
Приравнять к нулю и решить как неполное квадратное уравнение:
х²+8х=0
х(х+8)=0
х₁ = 0;
х+8=0
х₂ = -8.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -8 и х= 0, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -8 до 0.
Решение неравенства: х∈ (-8; 0).
Неравенство строгое, скобки круглые.
4) 8х²+10х-3>=0
Приравнять к нулю и решить как квадратное уравнение:
8х²+10х-3=0
D=b²-4ac =100+96=196 √D=14
х₁=(-b-√D)/2a
х₁=(-10-14)/16
х₁= -24/16
х₁= -1,5;
х₂=(-b+√D)/2a
х₂=(-10+14)/16
х₂=4/16
х₂=0,25.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у >= 0 (как в неравенстве), при значениях х от - бесконечности до -1,5 и при х от 0,25 до + бесконечности.
Решение неравенства: х∈ (-∞; -1,5]∪[0,25; +∞).
Неравенство нестрогое, скобки квадратные.
5) 2х²+9х+9<=0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =81-72=9 √D=3
х₁=(-b-√D)/2a
х₁=(-9-3)/4
х₁= -12/4
х₁= -3;
х₂=(-b+√D)/2a
х₂=(-9+3)/4
х₂= -6/4
х₂= -1,5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -3 и х= -1,5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (как в неравенстве), при значениях х от -3 до -1,5.
Решение неравенства: х∈ [-3; -1,5].
Неравенство нестрогое, скобки квадратные.
6) х²+7х-60<0
Приравнять к нулю и решить как квадратное уравнение:
х²+7х-60=0
D=b²-4ac =49+240=289 √D=17
х₁=(-b-√D)/2a
х₁=(-7-17)/2
х₁= -24/2
х₁= -12;
х₂=(-b+√D)/2a
х₂=(-7+17)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -12 и х= 5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -12 до х = 5.
Решение неравенства: х∈ (-12; 5).
Неравенство строгое, скобки круглые.
у=2 при любом значении х, у=2
у=2,5 и у=-1,5 при любом значении х, у соответственно равен 2,5 и -1,5
у=-3х прямая проходящая через начало координат, задаём ещё одну точку и строим прямую