Cделаем замену x2 + 4x = t, тогда уравнение будет выглядеть следующим образом:
(t – 5)(t – 21) = 297.
Раскроем скобки, приведем подобные слагаемые:
t2 – 21t – 5t + 105 = 297;
t2 – 26t – 192 = 0.
По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.
После обратной замены будем иметь:
x2 + 4x = -6 или x2 + 4x = 32
x2 + 4x + 6 = 0 x2 + 4x – 32 = 0
D = 16 – 24 < 0 D = 16 + 128 > 0 ((x – 1)(x + 5))((x – 3)(x + 7)) = 297;
(x2 + 5x – x – 5)(x2 + 7x – 3x – 21) = 297;
(x2 + 4x – 5)(x2 + 4x – 21) = 29Нет корней x1 = -8; x2 = 4
Найдем произведение корней: -8 · 4 = -32.
ответ: -32.
Пусть ширина=х, тогда длина=х+60.
Подставим значения в формулу:
х*(х+60)=7200
х²+60х-7200=0
D=b²-4ac=60²-4*(-7200)=3600+28800=32400
x1=(-60+180)/2=60
x2=(-60-180)/2=-120 (не удовлетворяет условию, так как ширина не может быть отрицательна)
Ширина=60 м
Длина=60+60=120 м
ответ: 60; 120 м.