М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shol09
shol09
03.10.2020 09:41 •  Алгебра

Выражение 2b^2-b/b^3+1 - b-1/b^2-b+1

👇
Ответ:
leeesy664
leeesy664
03.10.2020

\tt \displaystyle \frac{1}{b+1}

Объяснение:

\tt \displaystyle \frac{2 \cdot b^2-b}{b^3+1}-\frac{b-1}{b^2-b+1} = \frac{2 \cdot b^2-b}{(b+1) \cdot (b^2-b+1)}-\frac{b-1}{b^2-b+1} =\\\\= \frac{2 \cdot b^2-b}{(b+1) \cdot (b^2-b+1)}-\frac{(b-1) \cdot (b+1)}{(b+1) \cdot (b^2-b+1)} = \\\\= \frac{2 \cdot b^2-b-(b-1) \cdot (b+1)}{(b+1) \cdot (b^2-b+1)}= \frac{2 \cdot b^2-b-(b^2-1)}{(b+1) \cdot (b^2-b+1)}=

\tt \displaystyle = \frac{2 \cdot b^2-b-b^2+1}{(b+1) \cdot (b^2-b+1)}=\frac{b^2-b+1}{(b+1) \cdot (b^2-b+1)}=\frac{1}{b+1} .

4,8(84 оценок)
Открыть все ответы
Ответ:
djghjc13
djghjc13
03.10.2020

Смотри.. Мы скорость велосепедиста премем за неизвестную величину и позначим через х км/час. И по условию задачи нам извесно что скорость автомобиля на 90 км/час больше скорости велосипедиста. Значит скорость автомобиля будет равна х+90 км/час. Идем дальше.. Нам известно пройденое растояние , оно равно 50 км. Поделив растояние на скорость мы узнаем затраченое время в пути (например км/(км/час)=час) . Составляем уравнение:

 

50/х - это мы узнаем  время затраченое велосипедистом на преодоление 50 км.

 

50/(х+90) - это время затраченое автомобилем на преодоление 50 км.

 

Велосипедист ехал медленнее автомобиля, и прибыл на 4,5 часа позже. (ВНИМАНИЕ! я пишу 4,5 а в задаче стоит 4 часа 30 минут. 30 минут это пол часа или 30/60=1/2=0,5 часа. Отсюда получается 4,5 часа) Далее.. Мы эту разницу в 4,5 часа получим отняв от времени затраченого на дорогу велосипедистом , время затраченое на дорогу автомобилем . Тоесть от большего отнимаем меньшое. Велосипедист затратил больше времени, автомобиль меньше. Вот мы и дошли по составления самого уравнения:

 

(50/х)- (50/(х+90))=4,5

 

Решаем:

 

Сводим к общему знаменателю левую часть:

 

(50х-4500-50х)/(х^2+90x)=4.5

(50х-4500-50х)/(х^2+90x)-4.5=0

(-4.5x^2-405x-4500)/(х^2-90x)=0

 

Избавляемся от знаменателя , умножая его на ноль, и получаем квадратное уравнение (возле каждого числа знаки меняем на противоположные , для удобства):

 

4,5x^2+405x+4500=0

D=164025+81000=245025

Извликаем корень с дискреминанта:

d=495

x1=(-405+495)/(4.5*2)=90/9=10

x2=(-405-495)/(4.5*2)=-900/9=-100

 

Вот.. Значит у нас вышло два решения даного квадратного уравнения, но условия задачи удовлетворяет только одно из них, и не трудно догадатся какое. Поскольку скорость не может быть величиной отрицательной, то нам подходит х1=10. Значит скорость велосипедиста равна 10 км/час.

 

Все просто.) Немного логики и абстрактного мышления и все получится.)

 

4,8(13 оценок)
Ответ:
nushales
nushales
03.10.2020
1. Если не лезть в дебри, то рассмотрим такой многочлен:
f(x)=a_n x^n +a_{n-1} x^{n-1} +a_{n-2} x^{n-2} +...+a_2 x^2 +a_1 x^1 +a_0 x^0,
где  a_i  - коэффициент

Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
f(x)=(a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0)+ \\ \\+(a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3} +...+a_3 x^3 +a_1 x^1)

Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то:
g(x)=a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0
Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х):
g(-x)=a_{2k} (-x)^{2k} +a_{2k-2} (-x)^{2k-2} +...+a_2 (-x)^2 +a_0 (-x)^0= \\ \\ =g(x)=a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0=g(x)
Итак, доказали, что функция g(x)=g(-x) чётная.

Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно.
h(x)=a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3} +...+a_3 x^3 +a_1 x^1
Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х):
h(-x)=a_{2k-1} (-x)^{2k-1} +a_{2k-3} (-x)^{2k-3} +...+a_3 (-x)^3 +a_1 (-x)^1= \\ \\ =-a_{2k-1} x^{2k-1} -a_{2k-3} x^{2k-3} -...-a_3 x^3 -a_1 x^1= \\ \\ =-(a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3}+-...+a_3 x^3 +a_1 x^1)=-h(x)
Итак, доказали, что функция h(x)=-h(-x) нечётная.

После всего сказанного, имеем:
f(x) = g(x) + h(x)
функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.

2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций.
Запишем нашу функцию в таком виде:
f(x)= \frac{f(x)+f(-x)}{2} +\frac{f(x)-f(-x)}{2}
В правильности такой записи легко убедиться, если в правой части произвести сложение.

Рассмотрим функцию:
g(x)=\frac{f(x)+f(-x)}{2}
Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс:
g(-x)=\frac{f(-x)+f(-(-x))}{2}=\frac{f(-x)+f(x)}{2}=\frac{f(x)+f(-x)}{2}=g(x)
Функция g(x) чётная.

Рассмотрим функцию:
h(x)=\frac{f(x)-f(-x)}{2}
и выясним её чётность.
h(-x)=\frac{f(-x)-f(-(-x))}{2}=\frac{f(-x)-f(x)}{2}=-\frac{f(x)-f(-x)}{2}=-h(x)
Функция h(x) нечётная.

Таким образом, f(x)= g(x)+h(x), где g(x) - чётная, а h(x) - нечётная функция.
Что и требовалось доказать.

* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.
4,6(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ