М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Reizon
Reizon
02.05.2020 18:41 •  Алгебра

Знайти значення виразу 6+3a+3b,якщо a+b=8
!

👇
Ответ:
9872105
9872105
02.05.2020

ответ:30

Объяснение:6+3a+3b a+b=8

3(2+a+b)

3(2+8)

3*10=30

ответ:30

4,8(82 оценок)
Ответ:
ego1917
ego1917
02.05.2020

Объяснение:

=6+3(а+в)=6+3*8=30

4,7(1 оценок)
Открыть все ответы
Ответ:
F1kser
F1kser
02.05.2020
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0,
(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0
2) Найдем нули числителя и знаменателя:
Числитель: -Все скобки приравниваем к нулю:
х∧2+2х+1=0
D<0, f(x)>0 х-любое число
x-3=0
x=3
x+2=0
x=-2
Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности),
Знаменатель: х∧2+2х-3 не равно 0
D=16
x=-3
x=1
Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности)
Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
4,8(58 оценок)
Ответ:
нина568
нина568
02.05.2020

Во слишком много - ответы тоже краткие.

Объяснение:

1,1  f(-6) = 1/3*36 +12 = 24 - ответ.

1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ

2. Не допускается деление на 0.

Дано: y =x²-1*x-6 - квадратное уравнение.

Вычисляем дискриминант - D.

D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень

3 и -2 - корни уравнения - исключить из ООФ.

D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ

3,1

Дано: y = x²-4*x+3 - квадратное уравнение.

D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень

3 и 1 - нули функции.

Минимум посередине между нулями = (1+3)/2 = 2 = x.

Fmin(2) = -1

Вершина параболы в точке А(2;-1), ветви вверх.

1) E(f) = [-1;+∞) - область значений.

2) Убывает: х = (-∞;2)

3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ

4) Графики на рисунке в приложении.

5) Разрывы при делении на 0 в знаменателе.

х² ≠ 16 и х ≠ ± 4.

D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.

4,7(49 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ