ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8
Объяснение:
(х + 12)(х – 4)(х – 20) > 0
решим неравенство методом интервалов
приравняем исходное выражение к 0 и найдем корни
(х + 12)(х – 4)(х – 20) =0
x₁=-12 ; x₂=4; x₃=20
нанесем корни на числовую прямую и найдем знаки выражения на каждом интервале
если перемножить скобки то коэффициент при х³ будет 1.
1>0 тогда при больших х знак выражения будет (+)
соответственно при малых х знак выражения будет (-)
в остальных интервалах знаки чередуются
(-12)420>
- + - +
так как исходное выражение >0 то выбираем интервалы со знаком (+)
х∈(-12;4)∪(20;+∞)
1. 100+ 4•1,3=-94,8
2. 3•2-0,4=5,6
3. 4•11-6•30=-136
4. 15√5,19/25
5. 18•1/9=2
6. 7•8+0,1=56,1
7. 17•6/17=6