Решение. Перепишем ребус столбиком:
Ясно, что первая цифра суммы Д = 1, так как сумма двух четырехзначных чисел не может превышать 19999. Ребус приобретает такой вид:
Третья цифра суммы А равна либо 2, либо 3. Однако, цифра А стоит в конце суммы и получается от сложения двух равных чисел Р. Значит, А – четная цифра, она не 3, а 2. Снова перепишем ребус:
Сумма Р + Р может дать на конце двойку в двух случаях: при Р = 1 и при Р = 6. Однако, Р = 1 невозможно, поскольку Д = 1. Значит, Р = 6, К = 5, а У либо 3, либо 8. Но так как сумма пятизначная, то У = 8.
ответ: 8126 + 8126 = 16252.
125. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 2, 6, 24, 120, 720.
Решение. Второе число получается из первого умножением на 2, третье из второго умножением на 3 и т. д.
ответ: 1, 2, 6, 24, 120, 720, 5040, ...
126. По круговой беговой дорожке длиной 400 м бегут Андрей и Виктор. Андрей бежит быстрее и обгоняет Виктора через каждые 12 минут. Через 36 минут после начала бег был прекращен. Кто пробежал больше и на сколько?
Решение. Андрей пробежал больше, чем Виктор, так как бежал то же время с большей скоростью. За каждые 12 минут Андрей пробегает на 1 круг больше, чем Виктор. Значит, за 36 минут Андрей пробежал на 3 круга больше, а три круга – это 1200 м.
ответ: Андрей пробежал больше на 1200 м.
127. Сумма и произведение четырех чисел равны 8. Что это за числа?
Решение. Осуществляется подбором:
1 + 1 + 2 + 4 = 1 x 1 x 2 x 4
ответ: 1, 1, 2 и 4.
Объяснение:
Так как это прямые, то они имеют максимум одну точку пересечения, либо не имеет ни одной, если они параллельны.
а) y1 = 17x - 3; y2 = -2x
y1 = y2 - это условие пересечения
17x - 3 = -2x ⇒ 19x = 3 ⇒ x = 3/19
y(3/19) = 17*3/19 - 3 = -2 * 3/19 = -6/19.
ответ: (3/19; -6/19)
б) y1 = x/3; y2 = 2 - 11x
y1 = y2
x/3 = 2 - 11x | * 3 ⇒ x = 6 - 33x ⇒ 34x = 6 ⇒ x = 6/34 = 3/17
y(3/17) = (3/17) / 3 = 2 - 11*3/17 = 1/17.
ответ: (3/17; 1/17)
в) y1 = 2/3x - 3; y2 = 2.5y1 = y22/3x - 3 = 2.5 ⇒ 2/3x = 5.5 | * 3/2 ⇒ x = 8.25
y(8.25) = 2*8.25/3 - 3 = 2.5
ответ: (8.25; 2.5)
(-3а^5х^3)^2 • х^2=9a^10x^6x^2=9a^10x^8