Посмотрите ниже,решение на фоте.
ctg (a) - ctg (2a)=
использовав формулу для котангенса двойного угла, получим
=ctg (a) - (ctg^ 2 (a) -1)/(2 *ctg (a))=
сведя к общему знаметелю=
=(ctg^2 (a) - (ctg^ 2 (a) -1)) / (2* ctg (a))=
раскрывая скобки
=(2*ctg^2 (a) - ctg^ 2 (a) +1)) /(2 * ctg (a))=
упрощая подобные
раскрывая скобки
=(ctg^ 2 (a) +1)) /(2 * ctg (a))=
=домножая на sin^2 (a) числитель и знаменатель, и использовав одно из основных тригонометрчиеских соотношений, получим
=(cos^ 2 (a) +sin^2 (a))) /(2 *cos (a)*sin a)=
использовав основное тригонометрическое тождество и формулу синуса двойного угла, получим=
= 1/(sin 2a),
а значит данное равенство является тождеством (левую часть путем преобрзования выражений привели в вид выражения в правой части).
Доказано
(cos π/12 - sin π/12) * (cos^3 π/12 + sin^3 π/12)=
использьвав формулу суммы кубов, получим
=(cos π/12 - sin π/12) * (cos π/12 + sin π/12)*(cos^2 π/12 + sin^2 π/12-cos π/12 * sin π/12) =
использовав формулу квадрата разности и основное тригонометрическое тождество и формулу двойного угла для синуса, получим
=(cos^2 π/12 - sin^2 π/12) * (1-1/2*sin π/ 6))
=использовав формулу двойного угла для косинуса, получим=
(cos π/ 6)) (1-1/2*sin π/ 6))=
использовав табличные значения косинуса и синуса π/ 6, получим =
корень(3)/2*(1-1/2*1/2)=3*корень(3)/8
ответ: 3*корень(3)/8
3069=(2*429 - 22(n - 1) /2 * n
3069 = (858 - 22n + 22)/2 * n
3069 = (880 - 22n)/2 * n
3069 = (440 - 11n) * n
440n - 11n² - 3069 = 0
11n² - 440n + 3069 = 0
n² - 40n + 279 = 0
D = (- 40)² - 4 * 279 = 1660 - 1116 = 484 = 22²
n₁ = (40 + 22)/2 = 31
n₂ = ( 40 - 22)/2 = 9