М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maxidro1
maxidro1
05.10.2021 23:31 •  Алгебра

Найти координаты точки пересечения прямых у=3х-7. и. у=-2х+5. с решением.

👇
Ответ:
Chemist2001
Chemist2001
05.10.2021

3x-7=-2x+5

5x=12

x=12/5=2,4

y=3x2.4-7=0.2

точки пересечения(2.4:0.2)

4,8(49 оценок)
Открыть все ответы
Ответ:
fokslov69
fokslov69
05.10.2021
(3x+4)- (3x-1)(1+3x)=65                                                              ((3x)^2+2*3x*4+4^2)-(3x+9x^2-1-3x)=65                                                            9x^2+24x+16-9x^2+1 = 65   (9x^2 и -9x^2 зачеркиваем так как взаимно уничтожаем)                                                                                                       24x=65-16-1                                                                                                       24x=48                                                                                                               x=48:24                                                                                                          x= 2.                                    
4,7(93 оценок)
Ответ:
ппчуп
ппчуп
05.10.2021

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

4,5(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ