(х+7)(х-5)(х-11)>0
х+7>0
х>-7
х-5>0
х>5
х-11>0
х>11
(11;+ бесконечность).
Пусть сторона куба при распиливании была разделена на х частей.
Тогда неокрашенных кубиков (внутренних) будет (х-2)^3, а число кубиков, у которой окрашена ровно одна грань (кубики на гранях большого, не прилежащие к ребрам) равно 6·(х-2)^2.
Получаем уравнение (x-2)^3 = 6·(x-2)^2 или x-2 = 6, x = 8
Куб распилили на 8^3 = 512 кубиков.
——————————————————————
Кубиков с 3 окрашенными гранями – 8
Кубиков с 2 окрашенными гранями – 6·12 = 72
Кубиков с 1 окрашенной гранью – 6·6·6 = 216
Неокрашенных кубиков – 6·6·6 = 216
ОДЗ: х принадлежит (-бесконечность; -4) U (4; +бесконечность)
для нахождения экстремума нужно найти производную...
f ' (x) = ((2x-5)(x+4) - (x^2-5x)) / (x+4)^2 = (2x^2 + 3x - 20 - x^2 + 5x) / (x+4)^2 =
= (x^2 + 8x - 20) / (x+4)^2 = (x-2)(x+10) / (x+4)^2
решение неравенства (x-2)(x+10) / (x+4)^2 > 0 (корни: -10; -4; 2)
х принадлежит (-бесконечность; -10) U (2; +бесконечность) =>
функция возрастает при х принадлежит (-бесконечность; -10] U [2; +бесконечность)
функция убывает при х принадлежит [-10; -4) U (-4; 2]
при х = -10 ---функция достигает максимума fmax = (100+50)/(-6) = -25
при х = 2 ---функция достигает минимума fmin = (4-10)/6 = -1
система:
9x - x^2 > 0
5 - x > 0
lg(5-x) не равен 0
x(9 - x) > 0
x < 5
5 - x не равно 1
х принадлежит (-бесконечность; 0) U (9; +бесконечность)
х принадлежит (-бесконечность; 5)
х не равен 4
х принадлежит (-бесконечность; 0) --- x < 0
+ - +
( - 7) (5) > x
x ∈ ( - 7; 5)