



ОДЗ: 5x(x-4) ≠ 0 => x ≠ 0; x ≠ 4
5x² + 13x + 8 = 0
D = 13³ - 4·5·8 = 169 - 160 = 9 = 3² = (-3)²
x₁ = (-13-3)/10= -16/10= -1,6
x₁ = - 1,6
x₂ = (-13+3)/10= -10/10= -1
x₂ = - 1
ответ: {- 1,6; - 1}
1)возрастает на промежутке (-2;0) и (2;+inf)
2) (-inf;-2) и (0;+inf)
Объяснение:
1) находим производную и корни этой производной
f'(x) = 3x^3-12x
x(x^2-4) = =0
x = 0, x=2, x=-2
расположим эти корни на числовой прямой и подставим значения левее и правее найденных корней в нашу найденную производную
ищем промежутки в которых стоит + значит начиная от левого числа и до правого наша функция растет
2)аналогично первому, находим производную , приравниваем к нулю ищем корни выставляем на числовой прямой расставляем знаки и ищем + там где+ значит там функция растет
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
Решение приведено на фото