Объяснение:
Задача сводится к двум проблемам - найти экстремумы внутри ООФ через первую производную или они на границах ООФ.
Задача 1)
y = x³ - 12*x + 4
y'(x) = 3*x² - 12 = = 3*(x-2)*(x+2) = 0
Корни производной: х = 2 и х = -2 - этот вне ООФ.
Ymin(2) = 8 - 24 + 4 = - 12 - минимальное - ответ
Ymax(0) = 4 - максимальное - на границе - ответ
Задача 2
y(x) = - 1/9*x³ + 3*x + 1 -функция
y'(x) = - 1/3*x² + 3 = 0 - производная.
Корни - х = -3 и х = 3 - вне ООФ. Экстремумы - на границах ООФ.
Ymax(-9) = 55 - максимальное - ответ
Ymin(-4) = - 3.89 - минимальное - ответ
Задача 3
y(x) = x³ - 5*x² + 3*x - 11 - функция
y'(x) = 3*x² - 10*x + 3 = 0
x1 = 1/3 и х2 = 3 - вне ООФ.
Ymax(1/3) = - 10.52 - максимум - ответ
Ymin(-1) = -20 - на границе - ответ.
ответ: Первый кран наполнит пустую ванну за 18 минут; второй кран опорожнит полную ванну за 12 минут.
Пошаговое объяснение: Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36. Составим уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
Объяснение:
вроде то)
tgα=sinα/cosα
Поэтому вычислим sinα
sinα = +-√1 - cos²α
угол α находится во второй четверти, где синус положителен
sinα = √1-(3/4)² = √1/4 = 1/2
tgα= - √3/2 : 1/2 = - √3
Это угол 180° - 30° = 150°