М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SHEVTSOVA1183
SHEVTSOVA1183
19.07.2020 18:47 •  Алгебра

Решить уравнение: 1.(x^2 – 4x) + x – 4 = 0 2.x^2 + 3x – 28 = 0

👇
Ответ:
nastyakotika
nastyakotika
19.07.2020

1. x^2 -4x +x -4 =0

x^2 -3x -4 =0

x^2 +x -4x=4=0

(x+1)(x-4)=0

x=-1

x=4

ответ: x=-1, x=4

2. x^2 +7x - 4x-28 =0

(x+7)(x-4)=0

x=-7

x=4

ответ: x= -7, x=4

4,4(9 оценок)
Открыть все ответы
Ответ:
alyasen2006
alyasen2006
19.07.2020
Уравнение любой прямой, в том числе и касательной это y=ax + b. Осталось только найти чему равны в нашем случае коэффициенты а и b
Т. к. касательная параллельная прямой y=4x-5 то отсюда следует что a = 4, ведь если прямые параллельны то у них равные углы наклона.

Осталось найти чему равно b. Для этого нам нужно знать точку касания.

Если мы вспомним о связи производной функции с касательной то сможем записать следующее

(x^2 + 2x)' = 4
посчитем производную, она равна 2х + 2. Приравняем к 4 найдем точку касания. х = 1. Подставляем этот х=1 в нашу функцию получаем y = 3. Итого мы нашли точку касания (1;3).
Используя это мы легко находим чему равен коэффициент b в уравнении y = 4x + b

3 = 4*1 + b . Отсюда b равно - 1;

Итого уравнение касательно y = 4x - 1
4,5(74 оценок)
Ответ:
Рассмотрим случаи, когда извлеченные шары одинакового цвета.
3 белых шара - сочетание из 7 по 3:
C_7^3= \dfrac{7\cdot6\cdot5}{1\cdot2\cdot3} =7\cdot5=35
3 зеленых шара - сочетание из 5 по 3:
C_5^3= \dfrac{5\cdot4\cdot3}{1\cdot2\cdot3} =5\cdot2=10
3 голубых шара - сочетание из 4 по 3:
C_4^3= \dfrac{4\cdot3\cdot2}{1\cdot2\cdot3} =4

Рассмотрим случаи, когда два извлеченных шара одинакового цвета, а третий отличается от них.
2 белых шара + 1 зеленый или голубой: сочетание из 7 по 2, умноженное на количество не белых шаров (5+4):
C_7^2\cdot (5+4)= \dfrac{7\cdot6}{1\cdot2} \cdot
 9=7\cdot3\cdot9=189
2 зеленых шара + 1 белый или голубой: сочетание из 5 по 2, умноженное на количество не зеленых шаров (7+4):
C_5^2\cdot (7+4)= \dfrac{5\cdot4}{1\cdot2} \cdot
 11=5\cdot2\cdot11=110
2 голубых шара + 1 белый или зеленый: сочетание из 4 по 2, умноженное на количество не голубых шаров (7+5):
C_4^2\cdot (7+5)= \dfrac{4\cdot3}{1\cdot2} \cdot
 12=2\cdot3\cdot12=72

Находим сумму всех возможных вариантов:
35+10+4+189+110+72=420
ответ
4,5(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ