Определение. Высказыванием называется утверждение, которое является истинным или ложным (но не одновременно).
То есть, чтобы выяснить, является ли некоторое предложение высказыванием, нужно сначала убедиться, что это утверждение, а затем установить, истинно оно или ложно.
Пример. “Москва – столица России” – истинное высказывание.
“5 –четное число” – ложное высказывание.
“” – не высказывание (неизвестно, какие значения принимает ).
“Студент второго курса” не высказывание (не является утверждением).
Высказывания бывают элементарные и составные.
Элементарные высказывания не могут быть выражены через другие высказывания. Составные высказывания можно выразить с элементарных высказываний.
Пример. “Число 22 четное” – элементарное высказывание.
“Число 22 четное и делится на 11” – составное высказывание.
Высказывания обозначают заглавными буквами латинского алфавита: , , ,… Эти буквы называют логическими Атомами.
При фиксированном множестве букв Интерпретацией называется функция , которая отображает множество во множество истинностных (логических) значений , то есть .
Истинностные значения истина и ложь сокращенно обозначаются и, л или T, F, или 1,0. Мы будем использовать обозначения 1 и 0. В определенной интерпретации буквы принимают значения 1 или 0.
К высказываниям и буквам можно применять известные из курса дискретной математики логические связки или логические операции. При этом получаются Формулы (формы). Формулы становятся высказываниями при подстановке всех значений букв.
у = х³ - 3х
у¹ = 3х² - 3
3х² - 3 = 0
х₁ = 1
х₂ = - 1
Это могут быть точки минимума и максимума функции.
Найдем значение производной на всех трех интервалах
х < -1 -1 < х < 1 и x > 1
Внесем данные в таблицу (на фото).
Получим, на промежутке (-∞; -1) функция возрастает ,
На промежутке (- 1 ; 1) функция убывает
И на промежутке ( 1 ; + ∞) функция снова возрастает
в точке х= - 1 функция имеет максимум
в точке х = 1 функция имеет минимум.
Это и есть интервалы (или промежутки) монотонности функции