В решении.
Объяснение:
График функции, заданной уравнением у=(a +1)x+a-1 пересекает ось абсцисс в точке с координатами (-5; 0).
а) Найдите значение а:
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6;
а = -6/4 (деление);
а = -1,5;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
в) Не выполняя построения графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.
Надо разложить выражение:
sin(x) · cos(x) + cos(x) · 2sin(х) · cos(x)=0
Вычислить произведение:
sin(x) · cos(x) + 2cos(x)^2 · sin(x)=0
Разложить выражение на множители:
sin(x) · cos(x) · (1+2cos(x))=0
Рассмотреть все возможные случаи:
sin(x)=0
cos(x)=0
1+2cos(x)=0
Решить уравнения:
x=kn, k€z
x=n/2+ kn, k€z
x=2n/3+2kn, k€z
x=4n/3+2kn, k€z
Найти объединение:
х=kn/2, k€z
x=2kn/3, k€z
Окончательное решение:
x={kn/2, k€z
{2kn/3,k€z