М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jadeholden451
jadeholden451
17.05.2023 13:22 •  Алгебра

(√10+2)(√10-2) с подробным объяснением,

👇
Ответ:
KarinochkaShiну
KarinochkaShiну
17.05.2023

√10^2-2^2

10-2^2

10-4

6

4,4(90 оценок)
Открыть все ответы
Ответ:
жепа564
жепа564
17.05.2023

Число делится на 10 только в том случае, если оно оканчивается цифрой 0.

Посмотрим, какой цифрой оканчивается каждое слагаемое.

1) число 7 в разных степенях оканчивается разными цифрами. Попробуем установить закономерность.

7^1=7,\\7^2=49,\\7^3=343,\\7^4=2401,\\7^5=16807,...

Т.е. последние цифры записи степеней семерки чередуются так: 7 - 9 - 3 - 1 и по кругу.

Т.к. 7^4 оканчивается цифрой 1, то 7^{2016} также оканчивается цифрой 1. Тогда число 7^{2017} оканчивается цифрой 7.

2) Для степеней четверки закономерность проще - 4 - 6 и по кругу:

4^1=4,\\4^2=16,\\4^3=64,\\4^4=256,...

Поскольку 4^2 оканчивается цифрой 6, то  4^{2018} также оканчивается цифрой 6.

3) Закономерность для степеней тройки - 3 - 9 - 7 - 1 и по кругу:

3^1=3,\\3^2=9,\\3^3=27,\\3^4=81,\\3^5=243,...

Т.к. 3^3 оканчивается цифрой 7, то 3^{2019} также оканчивается цифрой 7.

В итоге слагаемые 7^{2017}, 4^{2018}, 3^{2019} оканчиваются цифрами 7, 6 и 7 соответственно. Если их сложить, то в разрядке единиц класса единиц получим 0. Т.е. число 7^{2017}+4^{2018}+3^{2019} оканчивается цифрой 0 - следовательно, оно таки делится на 10.

ОТВЕТ: да.

4,5(45 оценок)
Ответ:
Lika39211
Lika39211
17.05.2023
Поскольку кубик имеет 6 граней, при броске каждого кубика есть шесть возможных вариантов выпадения очков. если бросать два кубика одновременно, то количество разных вариантов выпадения очков на двух кубиках будет равно 6*6 = 36. теперь нам необходимо определить, какое количество вариантов соответствует случаю, когда сумма выпавших на двух кубиков очков будет равна 6. переберем все такие возможности: 1) 1 кубик - 1, 2 кубик - 5; 2) 1 кубик - 2, 2 кубик - 4; 3) 1 кубик - 3, 2 кубик - 3; 4) 1 кубик - 4, 2 кубик - 2; 5) 1 кубик - 5, 2 кубик - 1. всего таких вариантов 5, а общее число вариантов выпадения очков на двух кубиках равно 36, следовательно, вероятность того что при броске двух кубиков сумма выпавших очков будет равна 6 составит 5/36. ответ: искомая вероятность 5/36
4,4(71 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ