М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Olgotata
Olgotata
07.11.2022 21:32 •  Алгебра

Найдите произведение многочленов и одночлена. (-5) (10+m)

👇
Ответ:
пропрл
пропрл
07.11.2022

м-5 но это не точно

4,4(21 оценок)
Открыть все ответы
Ответ:
DenisBru4anovvv
DenisBru4anovvv
07.11.2022
1) 5^(x-2) = 1                            5)2^(x²-3x+8) = 64
5^(x-2) = 5^0                                2^(x² -3x +8) = 2^6
x-2 = 0                                         x² -3x +8 = 6
x = 2                                             x² -3x +2 = 0
2) 3·4^x =48                               x = 1   и   х = 2
4^x = 16                                     6)7^(2x-8)·7^(x+7) = 0
4^x = 4²                                        нет решений
x=2                                             7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9                                  5^-x ≤ 5²·5·5^1/2  
3^x = 3³·3·3                                     5^-x ≤5^3,5 
3^x = 3^5                                          -x ≤ 3,5
x = 5                                                   x ≥ -3,5
4)3^x + 3^(x +1) = 4                    8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4                                2^x +2^(3 +x) ≤ 9 
3^x·4 = 4                                      2^x(1 +2^3) ≤ 9 | :9  
3^x = 1                                          2^x ≤ 1
x = 0                                              2^x ≤2^0
                                                       x≤ 0 
4,8(70 оценок)
Ответ:
jasulau
jasulau
07.11.2022
Напишем уравнение касательной к кривой у=8(√х)-7.
Уравнение касательной в точке (х₀;у₀) имеет вид
у=f(x₀)+f`(x₀)(x-x₀)

f(x₀)= 8(√х₀)-7
f`(x)=8/(2√х)=4/√х
f`(x₀)=4/√х₀

y=8(√х₀)-7+(4/√х₀)·(x-x₀)

Так как касательная проходит через точку (1;3), подставим координаты этой точки в уравнение касательной, чтобы найти х₀.

3=8(√х₀)-7+(4/√х₀)·(1-x₀);
3(√х₀)= 8х₀-7(√х₀)+4·(1-x₀);
10(√х₀)= 4х₀+4.
Возводим в квадрат
100х₀=16х₀²+32х₀+16;
16х₀²-68х₀+16=0
8х₀²-34х₀+8=0
D=(-34)²-4·8·8=1156-256=900
x₀=(34-30)/16=1/4  или  х₀=(34+30)/16=4

при х₀=1/4 получаем уравнение касательной

y=8(√1/4)-7+(4/√1/4)·(x-(1/4))
у=4-7+8(х-(1/4))
у=-3+8х-2
у=8х-5
при х₀=4 получаем уравнение касательной

y=8(√4)-7+(4/√4)·(x-4)
у=16-7+2(х-4)
у=9+2х-8
у=2х+1

Находим сколько точек каждая прямая имеет с графиком  y=x²+4x-1
8х-5=х²+4х-1
х²-4х+4=0
D=0
Уравнение имеет один корень, поэтому прямая у=8х-5 не удовлетворяет условию задачи.

2х+1=х²+4х-1
х²+2х-2=0
D=4-4·(-2)=4+8=12 >0
уравнение имеет два корня, значит прямая и парабола пересекаются в двух точках.
О т в е т. у=2х+1
4,6(7 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ